Wochenaufgabe Mathe

Aufgabe der Woche

Serie 59

Serie 59

Hier werden die Aufgaben 697 bis 708 veröffentlicht.

Aufgabe 1

697. Wertungsaufgabe

 

697 Logikrätsel

Schon sehr lange war der Onkel von Bernd nicht bei einer Familienfeier gewesen. Seine Arbeitsstätten musste er oft wechseln, aber nun hatte er in Berlin eine dauerhafte Arbeit gefunden. Nach und nach vervollständigte er auch seine Küche (Gefrierschrank, Elektroherd, Waschmaschine, Geschirrspüler und Kühlschrank). Allerdings konnte er die Geräte nur nach und nach auf Raten kaufen. - Die Laufzeiten lagen bei 6, 9, 11, 12 bzw. 14 Monaten und auch die Ratenzahlungen waren unterschiedlich (45, 50, 60, 75 bzw. 80 €). Im vorletzten Jahr hatte er fünf Monate lang jeweils ein Gerät pro Monat angeschafft – Mai, Juni, Juli, August und September.

Die Angaben, die Bernds Onkel machte, waren ziemlich durcheinander.

  1. Der erste Einkauf hatte keine Laufzeit von 11 Monaten. Gut zu wissen, 11 Monate lang waren jeweils 50 € zu bezahlen.
  2. Zufällig passten einmal Monat und Laufzeit zusammen und zwar im Juni: 6. Monat im Jahr und 6 Monate Laufzeit.
  3. Die Waschmaschine wurde als drittes Gerät gekauft.
  4. Die Rate für das letzte Gerät betrug 60 €.
  5. Für den Gefrierschrank musste er jeweils 45 € bezahlen.
  6. Direkt nach dem Kühlschrank wurde etwas gekauft, wofür er 75 € pro Monat bezahlen musste. Diese 75 € Laufzeit war länger als die für den Elektroherd.
  7. Der Vertrag für den Geschirrspüler umfasste genau 12 Zahlungen.

Wann, bestellte Bernds Onkel welches Gerät, welche Laufzeiten hatten die Verträge und was wurde jeweils bezahlt? 6 blaue Punkte

Monat

Artikel

Ratenzahlung

Laufzeit

Mai

     

Juni

     

Juli

     

August

     

September

     

Nachdem der Onkel von Bernd ausführlich über seine Geldausgaben berichtet hatte, kam er endlich mal zu etwas anderem. Er war am 12.12.2021 bei einem Rennen der Skilangläufer gewesen. Aber der Bericht war wieder nicht so einfach. Die Langläufer auf den Plätzen 1 bis 5 hatten die Startnummern 12, 14, 17, 18 bzw. 21. Sie hießen mit Vornamen Bert, Holger, Jens, Marcus, bzw. Werner. Die Nachnamen waren Jost, Keil, Lurch, Reis bzw. Schuster. Wie erwartet lag Bert Jost ziemlich weit vorn.

  1. Den zweiten Platz erreichte der Läufer mit der Startnummer 12.
  2. Werner – mit Startnummer 18 – heißt Keil oder Lurch.
  3. Die Platzierung von Marcus ist mindestens 2 Positionen schlechter als die von Lurch.
  4. Platz vier wurde von dem Läufer Keil erreicht, dessen Startnummer kleiner als 18 ist.
  5. Jens gewann das Rennen, hieß aber weder Schuster noch hatte er er Startnummer 21.
  6. Holger hatte nicht die Startnummer 17.

Wie hießen die Läufer (Vor – und Nachname), welchen Platz erreichten sie und wie lautete ihre Startnummer? 6 rote Punkte

Vorname

Nachname

Startnummer

erreichter Platz

 Bert

     

 Holger

     

 Jens

     

 Marcus

     

 Werner

     

--> Vorlage zum Eintragen <--

Termin der Abgabe 06.01.2022. Срок сдачи 06.01.2022. Ultimo termine di scadenza per l´invio è il 06.01.2022. Deadline for solution is the 6th. January 2022. Date limite pour la solution 06.01.2022. Soluciones hasta el 06.01.2022. Beadási határidő 2022.01.06. 截止日期: 2022.01.06 – 请用徳语或英语回答

chin

开启系列59

第697题 逻辑题

贝恩德的叔叔已经很久没有参加家庭聚会了。他经常不得不更换工作地点,但是现在他在柏林找到了一份固定的工作。他也逐渐地布置好了他的厨房:
冰柜、电炉、洗衣机、洗碗机和冰箱。然而他只能分期购买这些电器。分期付款期限为 6、9、11、12、14个月,分期付款的数目也不同,月付分别为 45、50、60、75和80欧元。
在前年他连续五个月每月购进一台电器,分别是五月、六月、七月、八月和九月。贝恩德的叔叔提供的信息相当地混乱。

  1. 第一次的购物没有11个月的期限。需要明确知道的是,11个月的期限需要月付50欧元。
    2. 碰巧的是有一个月份和付款期限相同,就是在六月份:一年中的第六个月和六个月的付款期限。
    3. 洗衣机是作为第三台电器购买的。
    4. 最后一台电器的月付是60欧元。
    5. 冰柜必须月付45欧。
    6. 在电冰箱之后购买的电器月付75欧元,这个75欧元的付款期限要长于电炉的期限。
    7. 洗碗机的合同正好分期12个月。

试问:贝恩德的叔叔何时购买了哪种电器,合同都是多长期限以及如何支付? 6个蓝点

697 1 chin

在贝恩德的叔叔详细汇报了他的财政支出后,终于可以做其它的事情了。
在2021年12月12日他参加了越野滑雪比赛。但是这份报道又没那么简单。
排名1到5参赛者的号码有12, 14, 17, 18 和 21。他们的名字是:伯特(Bert)、霍尔格(Holger)、延斯(Jens)、马库斯(Marcus)和维尔纳(Werner)。
他们的姓氏有:约斯特(Jost)、凯尔(Keil)、鲁奇 (Lurch)、雷斯(Reis)和舒斯特(Schuster)。正如预期的那样,伯特·约斯特(Bert Jost)排名
相当靠前。

  1. 第二名选手是12号。
    2. 维尔纳(Werner)的号码是18 ,他姓凯尔(Keil)或者鲁奇 (Lurch)。
    3. 马库斯(Marcus)的排名至少比鲁奇(Lurch)差2个名次。
    4. 第4名被选手凯尔(Keil)取得,他的号码比18小。
    5. 延斯(Jens)赢得了比赛,但他既不姓舒斯特(Schuster),号码也不是21。
    6. 霍尔格(Holger)的号码不是17。

请问参赛者都叫什么名字(名字和姓氏)?他们的排名以及号码是多少? 6个红点

697 2 chin

截止日期: 2022.01.06 – 请用徳语或英语回答

russ

Старт серии 59 697 Логическая головоломка

Дядя Бернда очень давно не был на семейных торжествах. Ему часто приходилось менять место работы, но теперь он нашёл постоянную работу в Берлине. Постепенно он пополнил и свою кухню (морозилка, электрическая плита, стиральная машина, посудомоечная машина и холодильник). Однако он мог покупать эти устройства только постепенно, в рассрочку. Сроки были 6, 9, 11, 12 и 14 месяцев, а ежемесячная ставка была разная (45, 50, 60, 75 и 80 €). В позапрошлом году он покупал по одному устройству в месяц в течении пяти месяцев - май, июнь, июль, август и сентябрь.

Информация, предоставленная дядей Бернду, была весьма запутанной.
1. Срок кредита первой покупки не равнялся 11 месяцам. Полезно знать, что пришлось заплатить по 50 евро в течении 11 месяцев.
2. Случайно один раз совпали месяц и срок, а именно в июне: 6-ой месяц года и 6 месяцев срока.
3. Стиральная машина куплена как третья машина.
4. Ежемесячная ставка последнего устройства - 60 евро.
5. Ему пришлось заплатить по 45 евро за морозилку.
6. Прямо после холодильника было куплено что-то, за что пришлось заплатить месячно 75 евро. Срок этого кредита был больший, чем у электрической плиты.
7. Контракт на посудомоечную машину содержал ровно 12 платежей.
Когда дядя Бернда заказал какое устройство, на каких условиях были заключены контракты и сколько платил он в каждом случае месячно? 6 синих очков

Месяц

Товар

Уплата в рассрочку

Срок кредита

Май

     

Июнь

     

Июль

     

Август

     

Сентябрь

     

После того, как дядя Бернда подробно рассказал о своих расходах, он наконец занялся кое-чем другим. 12 декабря 2021 года он посетил соревнование гоночных лыжников. Но отчёт снова оказался не таким простым. Лыжники, занявшие места с 1 по 5, имели стартовые номера 12, 14, 17, 18 и 21. Их имена были Берт, Хольгер, Йенс, Маркус и Вернер. Фамилии были Йост, Кейл, Лурх, Рейс и Шустер. Как и ожидалось, Берт Йост занял одно из передних мест.

  1. Бегун со стартовым номером 12 занял второе место.
  2. Фамилия Вернера - со стартовым номером 18 - Кейл или Лурх.
  3. Позиционирование Маркуса как минимум на 2 места хуже, чем у Лурха.
  4. Четвёртое место занял бегун Кейл, у которого стартовый номер меньше 18.
  5. Йенс выиграл гонку, но его звали не Шустер, и у него не было стартового номера 21.
  6. У Хольгера не было стартового номера 17.

Как звали бегунов (имя и фамилию), каких позиций они достигли и какой у них стартовый номер? 6 красных очков

Имя

Фамилия

Стартовый номер

Достигнутое место

 Берт

     

 Хольгер

     

 Йенс

     

 Маркус

     

 Вернер

     

hun

697

Már régóta nem vett részt Bernd nagybátyja családi ünnepségen. Gyakran kellett váltania a munkahelyét, de végre talált egy tartós állást Berlinben. Apránként kibővítette a konyháját is (fagyasztó, elektromos tűzhely, mosógép, mosogatógép és hűtőszekrény). Mindenesetre a gépeket csak egymás után tudta megvenni. A hitel futamideje 6,9,11, 12 és 14 hónap és a részletfizetés is különböző (45, 50, 60, 75 és 8o Euro). Tavalyelőtt öt hónapon keresztül havonta egy gépet szerzett be – májusban, júniusban, júliusban, augusztusban és szeptemberben. Az adatok, amiket Bernd nagybátyja megadott, nagyon kuszák voltak.

  1. Az első vásárlás futamideje nem 11 hónap volt. Jó tudni, hogy 11 hónapon keresztül 50 eurót kellett fizetnie.
  2. Véletlenül egyszer egy hónap és futamidő passzolt, júniusban: 6. hónap és 6 hónapos futamidő.
  3. A mosógépet harmadiknak vette.
  4. Az utolsó gép havi rátája 60 euró volt.
  5. A fagyaszóért havi 45 eurót kellett fizetnie.
  6. Közvetlenül a hűtőgép után vett valamit, amiért havi 75 eurót kellett fizetnie. Annek a 75 eurósnak a futamideje hosszabb volt, mint a tűzhelyé.
  7. A mosogató szerződése pontosan 12 hónapos volt.

Mikor, milyen futamidőre, milyen részletfizetéssel rendelte Bernd nagybátyja a gépeket? 6 kék pont

Miután Bernd nagybátyja a kiadásairól részletesen beszámolt el tudott mesélni valami mást is. 2021.12.12-én, sífutó versenyen volt. De a tudósítás megint nem sikerült túl egyszerűen. A sífutóknak 1-től 5-ig a 12,14,17,18 és 21-es rajtszámuk volt. Keresztnevük Bert, Holger, Jens, Marcus és Werner. Vezetéknevük pedig Jost, Keil, Lurch, Reis és Schuster. Mint várható volt, Bernd eléggé összekutyulva mesélte el.

  1. A második helyet a 12-es rajtszámú sífutó érte el.
  2. Werner – a 18-as rajtszámmal – vezetékneve Keil vagy Lurch.
  3. Marcus legalább két helyezéssel rosszabbat ért el, mint Lurch.
  4. A negyedik helyezést Keil lrte el, akinek a rajtszáma kisebb, mint 18.
  5. Jens nyerte a futamot, de sem Schusternek nem hívták, sem a 21-es rajtszámmal indult.
  6. Holger rajtszáma 17.

Hogy hívják a versenyzőket (vezeték és keresztnév), milyen helyezést értek el és mi volt a rajtszámuk? 6 piros pont

frz

697 Exercice logique

L'oncle de Bernd n'était pas allé à une fête de famille depuis très longtemps. Il devait souvent changer de lieu de travail, mais maintenant il avait trouvé un travail permanent à Berlin. Petit à petit, il a également complété sa cuisine (congélateur, plaques électriques, lave-linge, lave-vaisselle et réfrigérateur). Cependant, il n'a pu acheter les appareils que progressivement par versements. - Les échéances étaient de 6, 9, 11, 12 et 14 mois et les acomptes étaient différents (45, 50, 60, 75 et 80 €). L'année dernière, il a acheté un appareil par mois pendant cinq mois - mai, juin, juillet, août et septembre.

Les informations fournies par l'oncle de Bernd étaient assez confuses.

  1. Le premier achat n'avait pas une durée de 11 mois. Bon à savoir, il fallait payer 50€ pendant 11 mois.
  2. Par coïncidence, une fois le mois et les versements appariés, soit en juin : 6e mois de l'année et 6 mois de versements.
  3. La machine à laver a été achetée comme troisième appareil.
  4. Le versement pour le dernier appareil était de 60 €.
  5. Il a dû payer 45 € par versement pour le congélateur.
  6. Immédiatement après le réfrigérateur, quelque chose a été acheté pour lequel il a dû payer 75 €. Cette période de versements de 75 € était plus longue que celle de la cuisinière électrique.
  7. Le contrat pour le lave-vaisselle comportait exactement 12 paiements.

Quand l'oncle de Bernd a-t-il commandé quel appareil, quelles étaient les conditions des contrats et ce qui a été payé dans chaque cas ? 6 points bleus

Mois

Appareil

Versement

Durée

Mai

     

Juin

     

Juillet

     

Août

     

Septembre

     

Après que l'oncle de Bernd eut rendu compte en détail de ses paiements, il se mit finalement à autre chose. Il était visiteur d’une course de ski de fond le 12 décembre 2021. Mais le rapport n'était pas si simple. Les skieurs de fond des positions 1 à 5 avaient respectivement les numéros de départ 12, 14, 17, 18 et 21. Leurs prénoms étaient Bert, Holger, Jens, Marcus et Werner. Les noms de famille étaient Jost, Keil, Lurch, Reis et Schuster. Comme prévu, Bert Jost était assez loin devant.

  1. Le coureur avec le numéro de dossard 12 a atteint la deuxième place.
  2. Werner - avec le numéro de dossard 18 - s'appelle Keil ou Lurch.
  3. Le classement de Marcus est au moins 2 positions derrière de celui de Lurch.
  4. La 4e place a été atteinte par le coureur Keil, dont le dossard est inférieur au 18.
  5. Jens a remporté la course, mais son nom n'était ni Schuster ni avait-il le numéro de dossard 21.
  6. Holger n'avait pas le numéro de dossard 17.

Quel était le nom des coureurs (nom et prénom), quelle position ont-ils atteint et quel était leur dossard ? 6 points rouges

Prénom

Nom

Numéro dossard

Classement

 Bert

     

 Holger

     

 Jens

     

 Marcus

     

 Werner

     

esp

697 Problema de lógica

Hacía mucho tiempo que el tío de Bernd no asistía a una fiesta familiar. A menudo tenía que cambiar de lugar de trabajo, pero ahora había encontrado un empleo fijo en Berlín. Poco a poco, también había completado su cocina (congelador, cocina eléctrica, lavadora, lavavajillas y frigorífico). Sin embargo, sólo podía comprar los aparatos gradualmente a plazos. Los plazos eran de 6, 9, 11, 12 y 14 meses respectivamente y las cuotas también variaban (45, 50, 60, 75 y 80 euros respectivamente). El año anterior había comprado un aparato al mes durante cinco meses: mayo, junio, julio, agosto y septiembre. 

Los detalles que dio el tío de Bernd estaban bastante mezclados.

  1. La primera compra no tenía un plazo de 11 meses. Es bueno saberlo, 11 meses fueron 50 euros cada uno.
  2. Por casualidad, el mes y el plazo coincidieron una vez y fue en junio: sexto mes del año y 6 meses de plazo.
  3. La lavadora se compró como tercer electrodoméstico.
  4. La cuota del último aparato fue de 60 euros.
  5. Por el congelador tuvo que pagar 45 euros cada uno.
  6. Se compró algo directamente después de la nevera, por lo que tuvo que pagar 75 euros. Este plazo de 75 euros era más largo que el de la cocina eléctrica.
  7. El contrato del lavavajillas incluía exactamente 12 pagos.

¿Cuándo encargó el tío de Bernd qué aparato, cuáles fueron las condiciones de los contratos y qué se pagó en cada caso? 6 puntos azules

mes

artículo

pago a plazos (cuotas)

plazo

mayo

     

Junio

     

Julio

     

Agosto

     

septiembre

     

Después de que el tío de Bernd informara detalladamente sobre sus gastos de dinero, finalmente llegó a algo más. Había estado en una carrera de esquiadores de fondo el 12.12.2021. Pero el informe tampoco era tan sencillo. Los esquiadores de fondo de los puestos 1 a 5 tenían los números de salida 12, 14, 17, 18 y 21, respectivamente, y sus nombres de pila eran Bert, Holger, Jens, Marcus y Werner, respectivamente. Sus apellidos eran Jost, Keil, Lurch, Reis y Schuster, respectivamente. Como era de esperar, Bert Jost estaba bastante adelantado.

  1. El segundo lugar fue para el corredor con el número de dorsal 12.
  2. Werner - con el dorsal 18 - se llama Keil o Lurch.
  3. La colocación de Marcus es al menos 2 posiciones peor que la de Lurch.
  4. El cuarto puesto lo consiguió el corredor Keil, cuyo número de salida es menor que el 18.
  5. Jens ganó la carrera, pero no se llamaba Schuster ni tenía el número de salida 21.
  6. Holger no tuvo la salida número 17.

¿Cuáles fueron los nombres de los corredores (nombre y apellido), qué lugar alcanzaron y cuáles fueron sus números de dorsal? 6 puntos rojos

nombre

apellido

dorsal

lugar

 Bert      
 Holger      
 Jens      
 Marcus      
 Werner      

en

Start Serie 59

697 logical task

It's been a long time since Thoma's uncle went on a family reunion. He had to change his place of work very often, but no he had found a permanent job in Berlin. On and on he perfected his kitchen (freezer, electric stove, washing machine, dishwasher and refrigerator). However, he could only buy the appliances gradually on instalments. - The repayment periods varied 6, 9, 11, 12 resp. 14 months and the instalments also varied (45, 50, 60, 77 resp. 80 €). In the year before last he had purchased one device per month for five months – May, June, July, August and September.

The details that Bernd's uncle gave were quite mixed up.

  1. The first purchase did have a duration of 11 months. Good to know, for 11 months whe had to pay 50 € per month.
  2. By chance, the month and the term coincided once and that was in June: 6th month of the year and 6 months term.
  3. The washing machine was bought as the third appliance.
  4. The instalment for the last appliance was €60.
  5. For the freezer he had to pay 45 € each.
  6. Immediately after the fridge, something was bought for which he had to pay 75 € per month. This €75 term was longer than the one for the electric cooker.
  7. The contract for the dishwasher included exactly 12 payments.

When did Bernd's uncle order which appliance, what were the terms of the contracts and what was paid in each case? 6 blue points

month

article

instalment

repayment period

May

     

June

     

July

     

August

     

September

     

After Bernd's uncle had reported in detail about his money spending, he finally got around to something else. He had been at a race of cross-country skiers on 12.12.2021. But the report was again not so simple. The cross-country skiers in places 1 to 5 had the start numbers 12, 14, 17, 18 resp. 21. Thier first names were Bert, Holger, Jens, Marcus, resp. Werner. Their surnames were Jost, Keil, Lurch, Reis resp. Schuster. As expected, Bert Jost was quite far ahead.

  1. Second place went to the runner with start number 12.
  2. Werner - with start number 18 - is called Keil or Lurch.
  3. The placing of Marcus is at least 2 positions worse than that of Lurch.
  4. Fourth place was achieved by the runner Keil, whose start number is smaller than 18.
  5. Jens won the race, but his name was neither Schuster nor did he have start number 21.
  6. Holger did not have start number 17.

What were the names of the runners (first and last name), which place did they achieve and what was their start number? 6 red points

First name

Sure name

Start number

Achived position

 Bert

     

 Holger

     

 Jens

     

 Marcus

     

 Werner

     

Deadline for solution is the 6th. January 2022.

it

697 Enigma di Logica

Da un bel po‘, lo zio di Bernd non aveva più partecipato ad una festa in famiglia. Aveva dovuto cambiare spessisimo il suo posto di lavoro, ma finalmente aveva trovato un impegno fisso a Berlino. Poco a poco aveva complettato la sua cucina (congelatore, fornello elettrico, lavatrice, lavastoviglie e frigorifero). Doveva fare però un pagamento rateale. La durata era di 6, 9, 11, 12 o 14 mesi. Ed anche le rate mensili erano diversi (45, 50, 60, 75 o 80 €). Nell’anno penultimo aveva ordinato ogni mese un’altro elettrodomestico – maggio, giugno, luglio, agosto, settembre.

Quel che diceva lo zio era molto confuso:

  1. Il primo acquisto non aveva una durata di 11 mesi. Bene a sapere che per 11 mesi c’erano da pagare 50€ mensili.
    2. Casualmente solo una volta la durata corrispondeva al mese: giugno è il sesto mese e la durata era di 6 mesi.
    3. Per terzo, lo zio comprava la lavastovilgie.
    4. La rata per l’ultimo elettrodomestico erano 60€.
    5. Per il congelatore doveva pagare 45€ ogni mese.
    6. Subito dopo il frigorifero comprava una cosa, per la quale doveva pagare 75€ al mese. La durata per questi 75€ era più lunga di quella per il fornello elettrico.
    7. Il contratto per la lavastoviglie conteneva 12 rate.
    Quando lo zio di Bernd ordinava quale elettrodomestico, quale erano le durate e quant’era alta la rata?

Mese

Elettrodomestico

Rata

Durata

Maggio

     

Giugno

     

Luglio

     

Agosto

     

Settembre

     

Dopo aver raccontato profondamente delle sue spese, finalmente lo zio cambiava argomento. Il 12 dicembre 2021 era stato a una gara di sci di fondo. Ma di nuovo il suo racconto non era facile di seguire. I fondisti sui posti 1 a 5 avevano I pettorali 12, 14, 17, 18 eppure 21. I loro nomi erano Bert, Holger, Jens, Marcus e Werner. I loro cognomi erano Jost, Keil, Lurch, Reis e Schuster. Come aspettato, Bert Jost era molto bravo.

  1. Il fondista col pettorale 12 arrivava al secondo posto.
    2. Werner – col pettorale 18 – si chiama Keil o Lurch.
    3. Il piazzamento di Marcus è al minimo due posti peggiore di quello di Lurch.
    4. Il fondista Keil arrivava come quarto; il pettorale di Keil `e inferior di 18.
    5. Jens vinceva la gara; ne si chiama Schuster, na aveva il pettorale 21.
    6. Holger non aveva il pettorale 17.
    Come si chiamavano I fondisti (Nome e Cognome), quale piazzamento avevano e quale era il loro pettorale?

Nome

Cognome

Pettorale

Piazzamento

Bert

     

Holger

     

Jens

     

Marcus

     

Werner

     

 

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Hans, danke. --> pdf <--


Aufgabe 2

698. Wertungsaufgabe

deu

698

Mike berichtete, er habe von Fibonaccimustern geträumt:

698 leer

„Ich habe viele solcher 12er-Felder, die vier Quadrate breit und drei Quadrate hoch sind. Dazu die vier Farben orange (1 und 5 Quadrate ), gelb (1 Quadrat), grün (2 Quadrate) und blau (3 Quadrate) Das 12er-Feld ist jetzt ein Fibonacci-Feld, denn die Fibonaccizahlen starten ja mit 1; 1; 2; 3 und 5. Mit den gefärbten Teilflächen sind andere 12er-Felder so auszulegen, dass andere Muster entstehen und die orangenen Flächen sich nicht an einer Kante berühren.“
Die 12er-Felder dürfen nicht gedreht werden, Muster, die durch Spiegelung hervorgehen würden, zählen nicht als verschieden. (Drei blaue Quadrate in einer Reihe sind verboten, ebenso die Veränderung der Form für die „Fünf“.)

698 voll

4 andere Muster sind zu finden, oder es ist zu zeigen, dass es keine 4 anderen Muster geben kann. - 4 blaue Punkte
Nimmt man eine größere Anzahl von 12er-Feldern, so lassen sich in einer solchen Fläche natürlich mehr Fibonaccizahlen unterbringen.
Welches ist das nächst größere Fibonacci-Feld, welches aus 12er-Feldern gebildet werden kann und vollständig mit Fibonaccizahlen bedeckt ist? Auf Farben muss nicht geachtet werden. 4 rote Punkte

Termin der Abgabe 13.01.2022. Срок сдачи 13.01.2022. Ultimo termine di scadenza per l´invio è il 13.01.2022. Deadline for solution is the 13th. January 2022. Date limite pour la solution 13.01.2022. Soluciones hasta el 13.01.2022. Beadási határidő 2022.01.13. 截止日期: 2022.01.13 – 请用徳语或英语回答

chin

第698题

迈克汇报说,他梦见了斐波那契模型(Fibonaccimustern):

698 leer

"我有很多这样的12格区域,它的宽是四个正方形,高是三个正方形。
我这还有四种颜色:橙色(一个方块和五个方块),黄色(一个方块),绿色(两个方块)和蓝色(三个方块)。
这个12格区域现在就是一个斐波那契区域,因为裴波那契数字就是从1; 1; 2; 3 和 5开始的。

698 voll


用这样被着色的部分组建成了另外一个12格区域,新的模型出现了,橙色的部分不同时碰触一条边。
这个12格区域不能被旋转;由镜像产生的模型也不能作为不同的版本计算在内。"

(三个蓝色的方块不能在一排,同样“五”的形状也不能改变)
请找出四个其他的模型,或者证明没有其他的四个模型- 4个蓝点

取一个更多数量的12格区域,在这个区域里当然会有更多的裴波那契数字。
那么由12格区域组建的,并且可以完全用裴波那契数字覆盖的下一个较大的斐波那契区域是哪个?不必强调颜色! 4个红点
提交日期 2022.01.13 - 请用德语或英语回答

russ

Майк сообщил, что ему снились образцы Фибоначчи:

698 leer

«У меня много этих 12 квадратов, четыре квадрата в ширину и три квадрата в высоту. Вдобавок четыре цвета: оранжевый (1 и 5 квадратов), жёлтый (1 квадрат), зелёный (2 квадрата) и синий (3 квадрата). 12-значное поле теперь является полем Фибоначчи, потому что числа Фибоначчи начинаются с 1; 1; 2; 3 и 5. С частичными областями, окрашенными таким образом, должны быть выложены другие 12-значные поля, так чтобы создался другой узор, при чём оранжевые области не должны касаться у одного ребра».

698 voll
12-значные поля нельзя поворачивать, образцы, полученные в результате зеркального отображения, не считаются разными. (Три синих квадрата подряд запрещены, как и изменение формы для «пятёрки».)
Необходимо найти 4 других образца или показать, что других 4-х моделей быть не может. - 4 синих очка
Если вы возьмёте большее число из 12-значных полей, то, конечно, в такой области можно разместить больше чисел Фибоначчи.
Какое будет следующее большее поле Фибоначчи, которое может быть сформировано из 12-значных полей и покрыто полностью числами Фибоначчи? На цвета обращать внимание не нужно. 4 красных очка

hun

Mike egy Fibonacci-mintával álmodott:

698 leer

Sok ilyen 12-es mezőm volt, ami négy négyzet széles és négy négyzet hosszú. Továbbá négy szín volt bennük, narancs (1 és 5), sárga (1 négyszög), zöld (2 négyszög) és kék (3 négyszög). A 12-es mező most egy Fibonacci-mező, a számok 1,1,2,3 és 5-tel kezdődnek. Ilyen színes részfelülettel más 12-es mező is kirakható úgy, hogy más minta jöjjön létre és a narancs felületek ne érintsenek egy élt. A 12-es mezőt nem szabad forgatni.

698 voll

Minta, ami tükrözéssel jön létre, nem számít különbözőnek. (Három kék négyszög egy sorban tilos, mint ahogy az „ötös“ forma megváltoztatása is). Így négy másik minta található, vagy bebizonyítandó, hogy nincs négy másik ilyen minta. 4 kék pont
Amennyiben a 12-es mező többszörösét vesszük, természetesen több Fibonacci-számot helyezhetünk el. Mekkora a következő Fibonacci-mező, ami 12-es mezőkből áll és teljesen befedhető Fibonacci-számokkal? A színeket nem kell figyelembe venni. 4 piros pont

frz

Mike dit qu'il rêvait de motifs de Fibonacci :

698 leer

J'ai beaucoup de ces 12 carrés qui sont quatre carrés de large et trois carrés de haut. Ensuite, il y a les quatre couleurs orange (1 et 5 carrés), jaune (1 carré), vert (2 carrés) et bleu (3 carrés). Le champ à 12 chiffres est maintenant un champ de Fibonacci, car les nombres de Fibonacci commencent par 1 ; 1; 2 ; 3 et 5. Avec les zones de pièces colorées de cette manière, 12 autres champs doivent être disposés, l'autre motif est créé et les zones oranges ne se touchent pas sur un bord.

698 voll

Les 12 champs ne peuvent pas être tournés, les motifs qui résulteraient de la mise en miroir ne comptent pas comme différents. (Trois carrés bleus consécutifs sont interdits, ainsi que changer la forme du « cinq ») 4 autres motifs sont à trouver, ou il est à démontrer qu'il ne peut pas y avoir 4 autres motifs. - 4 points bleus
Si on prend un plus grand nombre de 12 champs, plus de nombres de Fibonacci peuvent bien sûr être crées dans une telle zone.
Quel est le prochain plus grand champ de Fibonacci, qui peut être formé de 12 champs et est entièrement recouvert de nombres de Fibonacci ? Il n'y a pas besoin de faire attention aux couleurs. 4 points rouges

esp

Mike informa de que ha estado soñando con patrones de Fibonacci:

698 leer

Tengo muchos de estos parches de 12, que tienen cuatro cuadrados de ancho y tres de alto. Hay cuatro colores: naranja (1 y 5 casillas), amarillo (1 casilla), verde (2 casillas) y azul (3 casillas). El campo de 12 es ahora un campo de Fibonacci, porque los números de Fibonacci empiezan por 1; 1; 2; 3 y 5. Con estas zonas coloreadas, hay que trazar otros campos de 12, de modo que se creen otros patrones y las zonas naranjas no se toquen en un borde.

698 voll

Los cuadrados de 12 no pueden ser girados, los patrones que resultarían de la duplicación no cuentan como diferentes. (Tres cuadrados azules seguidos están prohibidos, al igual que cambiar la forma del "cinco") Hay que encontrar otros 4 patrones, o demostrar que no puede haber otros 4 patrones. - 4 puntos azules
Si se toma un número mayor de cuadrados de 12, naturalmente pueden caber más números de Fibonacci en dicha área.
¿Cuál es el siguiente campo de Fibonacci más grande que puede estar formado por cuadrados de 12 y está completamente cubierto por números de Fibonacci? No es necesario prestar atención a los colores.  4 puntos rojos

en

698

Mike reports that he has been dreaming of Fibonacci patterns:

698 leer


I have many such 12-patches, which are four squares wide and three squares high. Therefore I'v got four colours: orange (1 and 5 squares), yellow (1 square), green (2 squares) and blue (3 squares). The field of 12 is now a Fibonacci field, because the Fibonacci numbers start with 1; 1; 2; 3 and 5. With these coloured areas, other fields of 12 are to be laid out, so that other patterns are created and the orange areas do not touch at one edge.

698 voll

The squares of 12 may not be rotated, patterns that would result from mirroring do not count as different. (Three blue squares in a row are forbidden, as is changing the shape for the "five") 4 other patterns must be found, or it must be shown that there cannot be 4 other patterns. - 4 blue points
If you take a larger number of squares of 12, you can naturally fit more Fibonacci numbers on such a surface.
What is the next largest Fibonacci field that can be made up of squares of 12 and is completely covered with Fibonacci numbers? There is no need to pay attention to colours. 4 red points

Deadline for solution is the 13th. January 2022.

it

Mike racconta di aver sognato di disegni tipo Fibonacci:

698 leer

„Ho tanti campi di 12 quadrati ognuno

(quattro quadrati di larghezza e tre quadrati di altezza). Poi i quattro colori arancione (1 e 5 quadrati), giallo (1 quadrato), verde (2 quadrati) e blu (3 quadrati). Il campo di 12 quadrati cosí diventa un disegno tipo Fibonacci, perché i numeri di Fibonacci iniziano con 1; 1; 2; 3; e 5. In un modo simile e con la stessa partizione devono essere inventati altri disegni tipo Fibonacci. I quadrati arancioni devono sempre essere riconoscibile come due parti diversi (cioè non si devono avere un lato in comune). I campi di 12 quadrati non devono essere girati e disegni che sorgono tramite un rispecchiamento uno dallˋ altro non valgono come diversi. Tre quadrati blu in una riga sono vietati come anche un’ altra forma per il „5“)

698 voll

Per l‘elenco di 4 tale disegni diversi ossia per la prova che non esistono 4 altri disegni di questo genere vengono dati 4 punti blu.
Componendo più campi di 12 quadrati, naturalmente ci entrano anche più numeri di Fibonacci.
Qual’è il prossimo campo, composto da campi di 12 quadrati che si può coprire interamente con numeri di Fibonaccci? (Non c’è bsisogno di occuparsi di colori) 4 punti rossi

 

Lösung/solution/soluzione/résultat/Решение:

 


Aufgabe 3

699. Wertungsaufgabe

 

Lösung/solution/soluzione/résultat/Решение:

 

Serie 58

Serie 58

Hier werden die Aufgaben 685 bis 696 veröffentlicht.

Aufgabe 1

685. Wertungsaufgabe

Logikaufgabe

deu

Start Serie 58

685 Logikrätsel

Bernds Mutter war letzte Woche beim Klassentreffen gewesen. Sie war froh, dass sie sich mit vielen ihrer ehemaligen Mitschüler treffen konnte. Sie war Schülerin an einer Spezialschule für Sprachen gewesen.
Als sie nach Hause kam, konnte sie davon berichten.
Eine Gruppe, mit der sie sich unterhalten hatte, bestand aus Ben, Erik, Jason, Mirko und Ron. Bevor sie über die Ereignisse während der Schulzeit sprachen, erzählten die 5 Jungs von ihren Vätern, die jeweils ein besonderes Hobby hatten. (Goldwaschen, Stricken, Malen, Reiten, Zaubern) Geboren waren die Väter 1957, 1959, 1963, 1966 und der Jüngste im Jahr 1970. Sie kamen aus verschiedenen Städten Deutschlands: Berlin, Erfurt, Odenthal, Plauen bzw. Staffelstein.

Bernds Mutter hatte sich Folgendes gemerkt:

  1. Der im Jahr 1959 geborene Vater strickte gern, war aber weder der Vater von Erik noch von Ron.
  2. Der jüngste Vater wurde in Erfurt geboren.
  3. Der Vater von Ron wurde nicht 1963 geboren.
  4. Bens Vater, der kein Goldwäscher war, wurde im Jahr 1966 geboren, aber nicht in Staffelstein.
  5. In Odenthal wurde Mirkos Vater geboren.
  6. Der malende Vater von Jason war nicht der jüngste Vater.
  7. Der zaubernde Vater war nicht der älteste Vater, er wurde in Berlin geboren, war der Vater von Erik oder aber von Ron.

Welcher Vater gehört zu welchem Jungen, hat welches Hobby und stammt aus welcher Stadt? 6 blaue Punkte.

Vater von

Geburtsort

Geburtsjahr

Hobby

Ben

     

Erik

     

Jason

     

Mirko

     

Ron

     

Irgendwann wechselten die Themen, das Abendbrot wurde eingenommen und dann ging es weiter mit den schlimmen Zeiten von Ben. Der hatte es geschafft, in der zweiten Schulwoche in der neunten Klasse jeden Tag - Montag bis Freitag - zu spät zu kommen. (5, 10, 15 , 20 und einmal sogar 25 Minuten). Es betraf jedes Mal ein anderes Fach (Russisch, Chinesisch, Englisch, Französisch und Spanisch). Die Kurse zu Ungarisch und Italienisch waren nicht betroffen, da sie am Nachmittag stattfanden.

Die Lehrerinnen der betroffenen Fächer waren Frau Abel, Frau Beck, Frau Helm, Frau Koch und Frau Schmidt. Jede bekam eine andere Ausrede zu hören (Auto kaputt, Bahn verpasst, Fahrradkette gerissen, Unfall auf dem Schulweg, Wecker nicht geklingelt).

  1. Am Mittwoch traf es Russisch, aber es waren weniger Minuten als beim Verspäten mit der Bahn.
  2. Am Montag waren es nur 5 Minuten. Es betraf also nicht den Englischunterricht bei der Frau Abel.
  3. Die Verspätung von 15 Minuten erklärte er mit dem Unfall, der betroffene Unterricht war entweder der von Frau Beck oder von Frau Helm.
  4. Die Verspätung in Chinesisch schob er auf das kaputte Auto.
  5. Zu Spanisch kam er 20 Minuten zu spät. Das lag irgendwann nach dem Tag des Unterrichts bei Frau Schmidt, aber irgendwann vor dem Tag mit Chinesisch.
  6. Am Donnerstag waren es nicht 25 Minuten.
  7. Am Freitag betraf es den Unterricht bei Frau Helm.
  8. Frau Koch berichtete er von der kaputten Fahrradkette.

Ben hat heute eine Firma, die Zeitmanagement für Weiterbildungen organisiert.

Wie viele Minuten kam Bernd an den einzelnen Tagen zu spät? Welchen Unterricht betraf das und welches Fach und welche Lehrerin? 6 rote Punkte

Tag

Verspätung

Fach

Lehrerin

Grund

Montag

       

Dienstag

       

Mittwoch

       

Donnerstag

       

Freitag

       

Logikvorlage als pdf

Termin der Abgabe 23.9.2021. Срок сдачи 23.09.2021. Ultimo termine di scadenza per l´invio è il 23.09.1921. Deadline for solution is the 23th. September 2021. Date limite pour la solution 23.09.2021. Soluciones hasta el 23.09.2021. Beadási határidő 2021.09.23. 截止日期: 2021.09.23 - 请用徳语或英语回答。

chin

开始第58系列
第685题 逻辑题

贝恩德的妈妈上周参加了同学聚会。她很高兴见到以前的同学。她曾是一所语言学校的学生。当她回到家以后,她说起了这件事儿。
和她聊天的人里有本(Ben)、埃里克(Erik)、杰森(Jason)、米尔科(Mirko)和罗恩(Ron)。在他们聊起学生时代的一些事情之前,他们谈到了他们有着特殊爱好的父亲们。他们的爱好有淘金、编织、绘画、骑马、变魔术。
他们的父亲们分别出生于1957年, 1959年, 1963年, 1966年,最年轻的一位出生于1970年。他们来自德国不同的城市:柏林(Berlin)、埃尔福特(Erfurt)、奥登塔尔(Odenthal)、普劳恩(Plauen)和斯塔费尔施泰因(Staffelstein)。

贝恩德的妈妈记录了下边的内容:
1. 1959年出生的这位父亲很喜欢编织,但是他既不是埃里克(Erik)的父亲,也不是罗恩(Ron)的父亲。
2. 最年轻的这位父亲是在埃尔福特(Erfurt)出生的。
3. 罗恩(Ron)的父亲不是在1963年出生。
4. 本(Ben)的父亲不是淘金者。他出生于1966年,但不是在斯塔费尔施泰因(Staffelstein)出生的。
5. 米尔科(Mirko)的父亲是在奥登塔尔(Odenthal)出生的。
6. 杰森(Jason)的父亲是一位画家,但是他不是最年轻的。
7. 会魔术的这位父亲不是年纪最大的。他出生在柏林(Berlin),他有可能是埃里克(Erik)或者罗恩(Ron)的父亲。

请问:他们分别是谁的父亲?有什么爱好?来自于哪个城市? (6个蓝点)
685blue chin


下列人的父亲 出生地 哪年出生 爱好

本(Ben)
埃里克(Erik)
杰森(Jason)
米尔科(Mirko)
罗恩(Ron)

不知道什么时候大家换了话题,晚饭之后大家说到了本(Ben)糟糕的那段时光。在九年级开学的第二个星期本(Ben)几乎每天,从周一到周五都迟到。5分钟、10分钟、15分钟、20分钟,甚至有一次迟到25分钟。每一次都是在不同的课上,
俄语、汉语、英语、法语或者西班牙语。但是没有匈牙利语和意大利语,因为这两门课下午才有。教这几门课的老师是:阿贝尔老师(Frau Abel)、贝克老师(Frau Beck)、赫尔姆老师(Frau Helm)、科赫老师(Frau Koch)和施密特老师(Frau Schmidt)。
她们每个人听到的迟到理由也都不一样,有汽车坏了,没赶上车,自行车链子坏了,上学路上发生事故,以及闹钟没响。

  1. 周三是俄语课,迟到理由是错过了车。
    2. 周一只晚了5分钟。但是不是阿贝尔老师(Frau Abel)的英语课。
    3. 迟到15分钟的理由是遇到事故,这门课不是贝克老师(Frau Beck)的,就是赫尔姆老师(Frau Helm)的。
    4. 汉语课迟到的理由是汽车坏了。
    5. 西班牙语课迟到20分钟。这门课的第二天是施密特老师(Frau Schmidt)的课,前一天是汉语课。
    6. 周四迟到的时长不是25分钟。
    7. 周五是赫尔姆老师(Frau Helm)的课。
    8. 他告诉科赫老师(Frau Koch)迟到的原因是自行车链子坏了。

本(Ben)目前在管理一家公司,这个公司是给进修培训做时间管理的。

请问: 本(Ben)每天各迟到多长时间?在哪门课上,哪个科目?是哪个老师的课? (6个红点)
685red chin
时间 迟到时长 科目 老师 迟到理由

周一
周二
周三
周四
周五

截止日期: 2021.09.23 - 请用徳语或英语回答。

rus

Начало серии 58 685 Загадка по логике На прошлой неделе мать Бернда была на встрече класса. Она была счастлива встречаться со многими из своих бывших одноклассников. Она училась в специальной языковой школе. Вернувшись домой, она смогла об этом рассказать. Одна группа, с которой она разговаривала, состояла из Бена, Эрика, Джейсона, Мирко и Рона. Прежде чем говорить о том, что происходило в школе, пятеро парней рассказали о своих отцах, у каждого из которых было особое хобби. (мыть золото, вязание, рисование, верховая езда, магия). Отцы родились в 1957, 1959, 1963, 1966 годах, а самый младший - в 1970 году. Они произошли из разных городов Германии: из Берлина, Эрфурта, Одентала, Плауэна и Стаффельштейна. Мать Бернда запомнила следующее: 1. Родившийся в 1959 году отец любил вязать, но не был отцом Эрика или Рона.

  1. Самый молодой отец родился в Эрфурте. 3. Отец Рона не родился в 1963 году. 4. Отец Бена, который не был золотоискателем, родился в 1966 году, но не в Стаффельштейне. 5. Отец Мирко родился в Одентале. 6. Отец-рисовальщик Джейсона не был самым молодым отцом. 7. Отец по магии не был самым старым отцом, он родился в Берлине, был отцом Эрика или Рона. Какой отец принадлежит какому мальчику, имеет какое хобби и происходил из какого города? 6 синих очков.

Отец

место рождения

год рождения

хобби

Бена

     
Эрика      
Джейсона      
Мирко      
Рон      

В какой-то момент темы сменились, был подан ужин, а затем плохие времена Бена стали темой. Ему удавалось опаздывать каждый день второй недели учебы в девятом классе - с понедельника по пятнице. (5, 10, 15, 20 и один раз даже 25 минут). Каждый раз это касалось другого предмета (русский, китайский, английский, французский и испанский язык). Курсы венгерского и итальянского языков не пострадали, так как они проводились во второй половине дня. Учителями соответствующих предметов были г-жа Абель, г-жа Бек, г-жа Хельм, г-жа Кох и г-жа Шмидт. Каждая услышала другую отговорку (сломанная машина, опоздал на трамвай, сломанная велосипедная цепь, авария по дороге в школу, будильник не зазвонил). 1. В среду это касалось русского языка, но опоздание было меньше , чем при опоздании на трамвай. 2. В понедельник это было всего 5 минут. Так что это не относилось к урокам английского госпожи Абель. 3. Он объяснил задержку на 15 минут аварией, соответствующие занятия были либо от госпожи Бек, либо от госпожи Хельм. 4. За опоздание на китайский он свалил вину на сломанную машину. 5. Он опоздал на урок испанского на 20 минут. Это было когда-то после дня занятий госпожи Шмидт, но когда-нибудь до дня занятий китайского языка. 6. В четверг опоздание не было 25 минут. 7. В пятницу это касалось уроков госпожи Хельм. 8. Он рассказал госпоже Кох о сломанной велосипедной цепи. Сегодня у Бена есть фирма, которая занимается организацией управления временем для повышений квалификации. На сколько минут Бернд опаздывал каждый день? Какие уроки касались этого, какого предмета и какого учителя? 6 красных очков

День

Опоздание

Предмет

Учительница

Отговорка

Понедельник

       

Вторник

       

Среда

       

Четверг

       

Пятница

       

hun

Bernd anyja a múlt héten osztálytalálkozón vett részt. Nagyon örült, hogy sok régi osztálytársával találkozhatott. Egy nyelvi tagozatos iskola tanulója volt.

Ahogy hazament, így tudósított róla.

Az egyik csoport, akikkel beszélgetett Ben, Erik, Jason, Mirko és Ron volt. Mielőtt az iskolai eseményeket felelevenítették, az 5 fiú az apukájáról mesélt, akiknek mind különleges hobbijuk volt (Aranymosás, kötés, festés, lovaglás, bűvészkedés). Az apukák 1957, 1959, 1963, 1966 és a legfiatalabb 1970-ben születtek. Különböző német városokból származtak: Berlin, Erfurt, Odenthal, Plauen és Staffelstein.

Bernd anyukája a következőket jegyezte meg:

1.Az 1959-ben született apa szívesen kötött, de nem volt sem Erik, sem Ron apja.
2. A legfiatalabb apa Erfurtban született.
3. Ron apja nem 1963-ban született.
4. Ben apja, aki nem aranymosó volt, 1966-ban született, de nem Staffelsteinban.
5. Odenthalban született Miklos apja.
6. Jason festő apja nem a legfiatalabb apa volt.
7. A bűvészkedő apa nem a legidősebb volt, Berlinben született, vagy Erik, vagy Ron apja volt.
Melyik apa melyik hobbival melyik fiúé volt, milyen hobbival és melyik városból? 6 kék pont

Valamikor témát váltottak, vacsoráztak, aztán Ben legnehezebb időszakáról dumáltak. Sikerült neki a második héten a kilencedik osztályban minden nap, hétfőtől péntekig elkésni (5, 10, 15 , 20 sőt egyszer 25 perccel). Minden alkalommal másik tantárgyról késett el (orosz, kínai, angol, francia és spanyol). A magyar és olaszórákat ez nem érintette, mert azok délután voltak.

Az érintett tantárgyak tanárai (Abel, Beck, Helm, Koch és Schmidt tanárnők). Mindegyikük más kifogást kapott (autó elromlott, vonatot lekéste, biciklilánc elszakadt, baleset az úton, az ébresztőóra nem csengett).

  1. Szerdán oroszról késett, de ez kevesebb perc volt, mint amikor a vonat késett.
    2. Hétfőn csak 5 percet késett. Ez nem az angolórát érintette Abel tanárnővel.
    3. A 15 perces késést a balesettel magyarázta, az érinett óra vagy Beck, vagy Helm tanárnő órája volt.
    4. A kínai óráról való késést a tönkrement autóra fogta.
    5. Spanyolra 20 perces késéssel érkezett. Ez valamikor Schmidt tanárnő órája utáni, de valahogy a kínai óra előtti napon történt.
    6. Csütörtökön nem 25 percet késett.
    7. Pénteken Helm tanárnőtől késett el.
    8. Koch tanárnőnek mesélt a tönkrement bicikliláncról.

Bennek ma egy olyan cége van, amelyik továbbképzések időbeosztását szervezi. Hány perces késéssel érkezett melyik napon Bernd? Melyik órát érintette ez, melyik tárgyból és melyik tanárnőnél? 6 piros pont

frz

énigmes logiques

La mère de Bernd était allée à la réunion de classe la semaine dernière. Elle était heureuse de rencontrer plusieurs de ses anciens camarades de classe. Elle avait été élève dans une école spéciale de langues.
Quand elle est rentrée chez elle, elle a pu en parler.
Un groupe auquel elle avait parlé était composé de Ben, Erik, Jason, Mirko et Ron. Avant de parler de ce qui s'est passé pendant l'école, les 5 garçons ont parlé de leurs pères, qui avaient chacun un passe-temps particulier. (Orpaillage, tricot, peinture, équitation, magie) Les pères sont nés en 1957, 1959, 1963, 1966 et le plus jeune en 1970. Ils venaient de différentes villes d'Allemagne : Berlin, Erfurt, Odenthal, Plauen et Staffelstein.
La mère de Bernd avait noté ce qui suit.

  1. Né en 1959, son père adorait tricoter, mais n'était ni le père d'Erik ni de Ron.
  2. Le plus jeune père est né à Erfurt.
  3. Le père de Ron n'est pas né en 1963.
  4. Le père de Ben, qui n'était pas orpailleurs, est né en 1966, mais pas à Staffelstein.
  5. Le père de Mirko est né à Odenthal.
  6. Le père peintre de Jason n'était pas le plus jeune père.
  7. Le père magicien n'était pas le père aîné, il est né à Berlin, était le père d'Erik ou de Ron.

Quel père appartient à quel garçon, a quel hobby et vient de quelle ville ? 6 points bleus.

Père de

Né à

Année naissance

Hobby

Ben

     

Erik

     

Jason

     

Mirko

     

Ron

     

À un moment donné, les sujets ont changé, le dîner a été pris et les mauvais moments de Ben ont continué. Il avait réussi à être en retard tous les jours de la deuxième semaine d'école en neuvième année - du lundi au vendredi. (5, 10, 15, 20 et une fois même 25 minutes) A ​​chaque fois il s'agissait d'un cours différent (russe, chinois, anglais, français et espagnol). Les cours de hongrois et d'italien n'ont pas été affectés car ils ont lieu l'après-midi.

 Les professeurs des matières concernées étaient Mme Abel, Mme Beck, Mme Helm, Mme Koch et Mme Schmidt. Tout le monde a dû entendre une excuse différente. (Voiture cassée, train manqué, chaîne de vélo cassée, accident sur le chemin de l'école, réveil pas sonné)

  1. Mercredi, il ça a touché les cours de russe, mais cela a duré moins de minutes que lorsque le train a été retardé.
  2. Lundi, ce n'était que 5 minutes. Cela ne s'appliquait donc pas aux cours d'anglais de Frau Abel.
  3. Il a expliqué le retard de 15 minutes avec l'accident, la classe touchée était soit celle de Mme Beck ou de Mme Helm.
  4. Il a mis le retard en cours de chinois sur la voiture cassée.
  5. Il avait 20 minutes de retard pour les cours d'espagnol. C'était quelque temps après la journée de classe avec Mme Schmidt, mais quelque temps avant la journée des cours de chinois.
  6. Ce n'était pas 25 minutes de retard jeudi.
  7. Le vendredi, il s'agissait des leçons avec Mme Helm.
  8. Il a parlé à Mme Koch de la chaîne de bicyclette cassée.

Aujourd'hui, Ben a une entreprise qui organise la gestion du temps pour la formation continue.
Combien de minutes Bernd avait-il de retard chaque jour ? Quelles leçons cela concernait-il et quelle matière et quelle professeure ? 6 points rouges

Jour

Retard

Cours

Professeure

Raison

Lundi

       

Mardi

       

Mercredi

       

Jeudi

       

Vendredi

       

esp

Inicio Serie 58

685 problema de lógica

La madre de Bernd había estado en la reunión de la clase la semana pasada. Se alegró de poder reunirse con muchos de sus antiguos compañeros de clase. Había sido alumna de una escuela especial de idiomas.

Cuando llegó a casa, pudo contar de la reunión.

Un grupo con el que había hablado estaba formado por Ben, Erik, Jason, Mirko y Mike. Antes de que hablaran de lo que había sucedido durante sus días de escuela, los 5 chicos le hablaron de sus padres, que tenían cada uno una afición especial (buscar oro, tejer, pintar, montar a caballo, magia). Los padres nacieron en 1957, 1959, 1963, 1966 y el más joven en 1970. Procedían de diferentes ciudades de Alemania: Berlín, Erfurt, Odenthal, Plauen y Staffelstein respectivamente.

La madre de Bernd había anotado lo siguiente.

  1. Al padre, nacido en 1959, le gustaba tejer, pero no era ni el padre de Erik ni el de Ron.
  2. El padre más joven nació en Erfurt.
  3. El padre de Ron no nació en 1963.
  4. El padre de Ben, que no era buscador de oro, nació en 1966, pero no en Staffelstein.
  5. El padre de Mirko nació en Odenthal.
  6. El padre pintor de Jason no era el padre más joven.
  7. El padre que hizo la magia no era el padre mayor, nació en Berlín y era el padre de Erik o de Ron.

¿Qué padre pertenece a qué niño, tiene qué afición y es de qué ciudad? 6 puntos azules.

Padre de

Lugar de nacimiento

Año de nacimiento

Afición 

Ben

     

Erik

     

Jason

     

Mirko

     

Ron

     

En algún momento, durante la cena, cambiaron los temas y se continuó con los malos tiempos de Ben. Él había llegado tarde todos los días en la segunda semana de clases en el noveno grado, de lunes a viernes (5, 10, 15 , 20 y una vez incluso 25 minutos). Afectó a una asignatura diferente cada vez (ruso, chino, inglés, francés y español). Los cursos de húngaro e italiano no se vieron afectados porque tuvieron lugar por la tarde.

Los profesores de las asignaturas afectadas eran las señoras Abel, Beck, Helm, Koch y Schmidt. Para cada uno tenía una excusa diferente (coche roto, tren perdido, cadena de bicicleta rota, accidente de camino al colegio, despertador no sonado).

  1. El miércoles fue ruso, pero fueron menos minutos que cuando el tren se retrasó.
  2. El lunes sólo fueron 5 minutos. Así que no afectó a la clase de inglés de la Sra. Abel.
  3. Explicó el retraso de 15 minutos con el accidente, la clase afectada era la de la Sra. Beck o la de la Sra. Helm. 
  4. Culpó del retraso en chino al coche averiado. 
  5. Llegó 20 minutos tarde a Español. Eso fue en algún momento después del día de la lección con la Sra. Schmidt, pero en algún momento antes del día con el chino. 
  6. El jueves no fueron 25 minutos.
  7. El viernes fue para la lección con la señora Helm.
  8. Le contó a la señora Koch lo de la cadena rota de la bicicleta.

Ahora, Ben tiene una empresa que organiza la gestión del tiempo para la formación continuada.

¿Cuántos minutos de retraso tuvo Bernd cada día? ¿A qué lecciones se refiere, a qué asignatura y a qué profesor? 6 puntos rojos

Día

Retraso

Asignatura

Profesora

Excusa

Lunes

       

Martes

       

Miércoles

       

Jueves

       

Viernes

       

en

logical riddle

Bernd's mother went on a class reunion last week. She was happy to meet her former classmates. She was a student at a special language school.

When she came home, she began talking about it.

One group she talked to included Ben, Erik, Jason, Mirko and Ron. Before they talked about the events during the school time, the five boys told about their fathers, who each had a special hobby. (panning for gold, knitting, drawing, horse riding, performing conjuring tricks) The fathers where born in 1957, 1959, 1963, 1966 and the youngest of them in the year 1970. They came from different cities in Germany: Berlin, Erfurt, Odenthal, Plauen resp. Staffelstein.

Bernd's mother remembered the following things.

  1. The father born in 1959 really liked knitting, but he wasn't the father of whether Erik or Ron.
  2. The youngest father was born in Erfurt.
  3. The father of Ron wasn't born in 1963.
  4. Ben's father didn't pan for gold, was born in 1966, but not in Staffelstein.
  5. In Odenthal Mirko's father was born.
  6. The drawing father of Jason was not the youngest father Vater.
  7. The conjuring father wasn't the oldest father, he was born in Berlin, was the father of either Erik or Ron.

Which father belongs to which boy, has which hobby and comes from which city? 6 blue points.

father of

birth place

year of birth

hobby

Ben

     

Erik

     

Jason

     

Mirko

     

Ron

     

At some point topics changed, the dinner was eaten and then it was about the difficult times of Ben. He managed to be late for school on every day – Monday till Friday – in the second school week, during the ninth class . (5, 10, 15 , 20 and one time even 25 minutes) Each time this happened for a different subject (Russian, Chinese, English, French and Spanish). The Hungarian and Italian classes were not affected, because they took place in the afternoon.

The teachers of the affected subjects where Mrs. Abel, Mrs. Beck, Mrs. Helm, Mrs. Koch and Mrs Schmidt. Each got to listen to a different excuse. (car broken, missed the train, bicycle chain torn apart, accident on the way to school, alarm clock didn't ring)

  1. On Wednesday it happened at the Russian lesson, but it where less minutes than the excuse for missing the train.
  2. On Monday it where five minutes. It didn't happen at the English lesson of Mrs. Abel.
  3. The 15 minute delay he explained with an accident, the affected subject was either the one of Mrs. Beck or the one of Mrs. Helm.
  4. The delay for Chinese he excused with a broken car.
  5. For Spanish he was twenty minutes late. This happened someday after the lesson of Mrs. Schmidt, but someday before the Chinese lesson.
  6. On Thursday it weren't 25 minutes.
  7. On Friday it affected the subject of Mrs. Helm.
  8. Mrs. Koch he excused to mentioning a torn bicycle chain.

Today Ben has got a company for time management, who organises advanced training in time management.

How many minutes was Bernd on each single day? Which subject with which teacher was affected and what excuse did he use? 6 red points

day

delay

subject

teacher

excuse

Montag (Monday)

       

Dienstag (Tuesday)

       

Mittwoch (Wednesday)

       

Donnerstag (Thursday)

       

Freitag (Friday)

       

Deadline for solution is the 23th. September 2021.

it

Enigma di logica

La settimana scorsa la mamma di Bernd ha partecipato ad un incontro di ex compagni di classe. Era contenta di aver incontrato tanta gente di questi tempi. Era stata alunna in una scuola linguistica. Tornata a casa ne raccontava.

Un gruppo col quale aveva chiacchierato consisteva di Ben, Erik, Jason, Mirko e Ron. Prima di parlare degli accaduti all’epoca, i 5 ragazzi raccontavano dei loro padri. Ognuno di essi aveva un hobby straordinario (cercare oro, lavorare a maglia, pitturare, cavalcare, fare incantesimi). I padre erano nati negli anni 1957, 1959, 1963, 1966 e 1970. Erano originari di diverse città tedesche: Berlin, Erfurt, Odenthal, Plauen e Staffelstein.

La madre di Bernd si ricordava il seguente:

  1. Il padre che era nato nel 1959 amava lavorare a maglia, ma non era il padre ne di Erik ne di Ron.
    2. Il padre più giovane era nato a Erfurt.
    3. Il padre di Ron non era nato nel 1963.
    4. Il padre di Ben, che non era il cercatore d’oro, era nato nel 1966, ma non a Staffelstein.
    5. Qdenthal è la città di nascita del padre di Mirko.
    6. Il padre che pitturava non era il padre piu giovane.
    7. Il padre che faceva incantesimi non era il più anziano. Era però nata a Berlin ed era il padre o di Erik o di Ron.

Quale padre appartiene a quale ragazzo, quale hobby ha e quando e dove è nato? 6 punti blu

Padre di

Luogo di nascita

Anno di nascita

Hobby

Ben

     

Erik

     

Jason

     

Mirko

     

Ron

     

Durante la cena e si ricordavano dei tempi brutti di Ben. Nella seconda settimana della nona classe era riuscito di essere ogni giorno – lunedì a venerid – in ritardo. (5, 10, 15, 20 ed una volta addirittura 25 minuti). Ogni giorno toccava un’altra materia (russo, cinese, inglese, francese e spagnolo). Non toccava però i corsi di ungherese ed italiano, dato che avevano luogo nel pomeriggio. Le insegnante erano le Signore Abel, Beck, Helm, Koch e Schmidt. E per ognuna aveva una scusa diversa. (macchina guasta, perso il treno, catena della bicicletta spezzata, incidente sul tragitto ccasa e scuola, la sveglia che non suonava).

  1. Mercoledì toccava il russo, ma erano meno minuti di ritardo che all’occasione col treno perso.
    2. Lunedì erano solo 5 minuti. Quindi non toccava la lezione di inglese della Sig.a Abel.
    3. Il ritardo di 15 minuti spiegava con l’incidente. La lezione era o quella della Sig.a Beck o di Sig.a Helm.
    4. Come causa per il ritardo in cinese sceglieva la macchina guasta.
    5. In spagnolo aveva un ritardo di 20 minuti. Aveva luogo in un giorno dopo la lezione della Sig.a Schmidt, ma prima del giorno col cinese.
    6. Giovedì non erano 25 minuti.
    7. Venerdì toccava la classe della Sig.a Helm.
    8. La Sig.a Koch raccontava della catena della bicicletta spezzata.

Attualmente, Ben è titolare di una ditta che organizza la gestione di tempo per istruzione ulteriore.

Quanti minuti Ben era in ritardo? Quale lezione toccava e quale professoressa? E quale scusa sceglieva? 6 punti rosso

Giorno

Ritardo

Lezione

Insegnante

Causa

lunedì

       

martedì

       

mercoledì

       

giovedì

       

venerdì

       

Lösung/solution/soluzione/résultat/Решение:

 Hier das Ergebnis der Lösung von Heloh, danke. --> pdf <--


Aufgabe 2

686. Wertungsaufgabe

deu

686

Ihr wisst ja, ich bin hier für klassische Aufgaben zuständig. Und diese Konstruktion ist wirklich überraschend.“, sagte der Opa von Bernd und Maria. „Lass sehen“, sagten die beiden.
Alle Kreise haben den Radius 1 (cm). Der erste Kreis hat den Mittelpunkt M. AC und DE sind senkrecht zueinander. Die Mittelpunkte der unteren Kreise und der Punkt A liegen alle auf einer Parallelen zu DE. Es wird das gleichseitige Dreieck DMF konstruiert. Die Verlängerung von MF führt auf den Mittelpunkt M1. Der Rest ergibt sich dann einfach.
Wie groß ist der Flächeninhalt des roten Dreiecks FEM? 4 blaue Punkte.
Das Überraschende der Konstruktion ist die Länge der Seite a des blauen Dreiecks. Wieso? 4 rote Punkte.

Termin der Abgabe 30.9.2021. Срок сдачи 30.09.2021. Ultimo termine di scadenza per l´invio è il 30.09.1921. Deadline for solution is the 30th. September 2021. Date limite pour la solution 30.09.2021. Soluciones hasta el 30.09.2021. Beadási határidő 2021.09.30. 截止日期: 2021.09.30 – 请用徳语或英语回答。

chin

第686题

686

 
“你们是知道的,我在这儿负责一些经典的习题。这个构图真的很令人惊奇”。贝恩德和玛丽雅的爷爷说。
“让我们看一下”。两个孩子说。

图中所有圆的半径都是1厘米,第一个圆的圆心是点M。
AC和DE是互相垂直的。
下边的几个圆的圆心以及点A都在DE的一条平行线上。这样一个等边三角形DMF就被构建出来了。圆心M1是在MF的延长线上。
剩下的就很容易了。

那么红色三角形FEM的面积是多大? 4个蓝点
这个构图的令人惊讶之处是蓝色三角形边长a的长度。为什么? 4个红点

截止日期: 2021.09.30 – 请用徳语或英语回答。

rus

686

«Вы знаете, я здесь отвечаю за классические задачи. И эта конструкция действительно удивительна», сказал дедушка Бернда и Марии. «Посмотрим», сказали оба. У всех окружностей радиус 1 (см). Первая окружность имеет центр M. AC и DE перпендикулярны друг другу. Центры нижних окружностей и точка A лежат на параллели к DE. Построен равносторонний треугольник DMF. Продолжение MF приводит к средней точке M1. Остальное потом просто вытекает. Насколько велика площадь красного треугольника FEM? 4 синих очка. Самое удивительное в конструкции - это длина стороны a синего треугольника. Почему? 4 красных очка.

hun

686

„Tudjátok biztos, hogy itt én vagyok a klasszikus feladatok felelőse. Ez a szerkesztés valóban meglepő.” – mondta Bernd nagyapja Máriának. „Hagy nézzük!” – mondták mindketten.
Minden kör sugara 1 (cm). Az első kör középpontja M. AC ÉS DE párhuzamosak egymással. Az alsó körök középpontja és az A pont mind egy párhuzamosan helyezkednek el DE-vel. megszerkesztjük az egyenlő oldalú DMF háromszöget. MF meghosszabbítása az M1 középponthon vezet. A maradék egyszerű. Mekkora a területe a piros FEM háromszögnek? 4 kék pont
A meglepetés a szerkesztésben a kék háromszög „a” oldalának hossza, Hogyan? 4 piros pont

frz

686

« Vous savez, je suis responsable des exercices classiques ici. Et cette construction est vraiment surprenante », a déclaré le grand-père de Bernd et Maria. « Voyons, » dirent les deux.
Tous les cercles ont un rayon de 1 (cm). Le premier cercle a le centre M. AC et DE sont perpendiculaires l'un à l'autre. Les centres des cercles inférieurs et le point A se trouvent tous sur une parallèle à DE. Le triangle équilatéral DMF est construit. L'extension de MF conduit au point milieu M1. Le reste se passe alors tout simplement.
Quelle est l'aire du triangle rouge FEM ? 4 points bleus.
La chose surprenante à propos de la construction est la longueur du côté a du triangle bleu. Pourquoi? 4 points rouges.

esp

686

"Sabéis que soy el responsable para las tareas clásicas. Esta vez, tengo una construcción realmente sorprendente", dijo el abuelo de Bernd y María.
"Vamos a ver", dijeron los dos.
Todos los círculos tienen el radio 1 (cm). El primer círculo tiene el centro M. AC y DE son perpendiculares entre sí. Los centros de los círculos inferiores y el punto A están todos encima de una paralela a DE. Se construye el triángulo equilátero DMF. La prolongación de MF conduce al centro M1. El resto es sencillo entonces.
¿Cuál es el área del triángulo rojo FEM? 4 puntos azules.
Lo sorprendente de la construcción es la longitud del lado a del triángulo azul. ¿Por qué? 4 puntos rojos.

en

686

“You know that I'm responsible for the classic tasks. And this construction is really surprising.”, Bernd's and Maria's grandpa said. “Let's see”, both said.
All circles do have the radius 1 (cm). The first circle does have the center M. AC and DE are perpendicular to each other. The center of the lower circles and point A are all situated on a parallel to DE. The equilateral triangle DMF gets constructed. The extension of MF goes along to the center M1. The rest comes about easily.
How big is the area of the red triangle FEM? 4 blue points.
The surprising thing of the construction is the length of side a of the blue triangle. Why? 4 red points.

it

686

„Come sapete bene, sono io il responsabile di compiti classici.E questa costruzione è veramente sorprendente.”, diceva il nonno di Bernd e Maria. “Facci vedere!”, chiedevano i due.
Tutti i cerchi hanno un raggio di 1 (cm). Il centro del primo è M. AC e CE sono ortogonali. Tutti i centri dei cerchi in basso sono situati su una parallela di DE. Viene costruito il triangolo equilatero DMF. Il prolungamento di MF porta al centro M1. Il resto è facile.
Qual’è la superficie del triangolo rosso FEM? 4 punti blu
Il fatto sorprendente di questa costruzione è la lunghezza del lato a del triangolo blu. Perchè? 4 punti rossi

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Paulchen, danke --> pdf <--


Aufgabe 3

687. Wertungsaufgabe

deu

„Was wird das?“, fragte Bernd seine Schwester. „Das wird eine besondere Lostrommel für die Weihnachtslotterie. Die soll so beschaffen sein, dass die 1000 Lose gut und sicher hineinpassen.“, sagte Maria.
Jedes Los kostet einen Euro. Es sind genau 10 Lose dabei, die jeweils 60 Euro Gewinn erbringen.
Wie groß ist die Wahrscheinlichkeit für ein Gewinnlos, wenn man als erster ein Los kauft? 2 blaue Punkte
Wie groß ist die Wahrscheinlichkeit für ein (mindestens) Gewinnlos, wenn man als erster gleich 50 Lose kauft? 2 rote Punkte

Termin der Abgabe 07.10.2021. Срок сдачи 07.10.2021. Ultimo termine di scadenza per l´invio è il 07.10.1921. Deadline for solution is the 7th. October 2021. Date limite pour la solution 07.10.2021. Soluciones hasta el 07.10.2021. Beadási határidő 2021.10.07. 截止日期: 2021.10.07 – 请用徳语或英语回答。

chin

第687题
“这会是什么?” 伯恩德问他的妹妹。
“这会是一个圣诞节彩票的特别摇奖箱。这个摇奖箱里要确保放得下1000张彩票。” 玛丽雅说。
每张彩票的价格是1欧元,其中有10张彩票可以赢得60欧元。
那么买第一张彩票的人中奖概率是多少? 2个蓝点。pdf
第一个直接买50张彩票的人中奖概率是多少? 2个红点。
截止日期: 2021.10.07 – 请用徳语或英语回答。

rus

«Что это будет?» - спросил Бернд у сестры. «Это будет специальный барабан для рождественской лотереи. Он должен быть сделан таким образом, чтобы 1000 билетов поместились хорошо и надёжно», - сказала Мария. Каждый билет стоит один евро. Есть 10 лотерейных билетов с выигрышом 60 евро. Если вы первым купите билет, какова вероятность выигрыша? 2 синих очка Какова вероятность выигрыша, если вы первым купите сразу 50 билетов? 2 красных очка 

hun

„Ez mi lesz?” – kérdezte Bernd a nővérét. „Ez egy különleges dob a karácsonyi lottóhoz. Arra szolgál, hogy 1000 sorsjegy jól és biztosan beleférjen.” – mondta Mária.
Minden sorsjegy egy euróba kerül. 10 sorsjegy van köztük, amelyik nyereménye 60 euró. Mekkora a valószínűsége egy nyereménynek, ha az ember először egy sorsjegyet vásárol? 2 kék pont
Mekkora a valószínűsége egy nyereménynek, ha az ember rögtön 50 sorsjegyet vesz? 2 piros pont

frz

« Qu'est-ce que ça va être ? » demanda Bernd à sa sœur. « Ce sera un petit tambour de loterie pour la loterie de Noël. Cela devrait être fait de manière que les 1000 billets s'intègrent bien et en toute sécurité », a déclaré Maria.
Chaque ticket de loterie coûte un euro. Il y a 10 tickets avec un gain de 60 euros.
Si on est le premier à acheter un ticket de loterie, quelle est la probabilité qu'un ticket soit gagnant ? 2 points bleus
Quelle est la probabilité d'un ticket gagnant si on est le premier à acheter 50 tickets ? 2 points rouges

esp

"¿Qué va a ser esto?", preguntó Bernd a su hermana. "Va a ser un bombo especial para la lotería de Navidad. Debe hacerse de tal manera que los 1.000 billetes quepan seguramente", dijo María.
Cada billete cuesta un euro. Hay 10 boletos en la lotería, que darán un premio de 60 euros.
¿Cuál es la probabilidad de obtener un boleto ganador si eres el primero en comprarlo? 2 puntos azules
¿Cuál es la probabilidad de obtener un boleto ganador si eres el primero en comprar 50 boletos? 2 puntos rojos

en

“What is that?”, Bernd asked his sister. “That's going to be a special lottery wheel for the Christmas lottery. It should be designed that way, that 1000 lottery tickets fit in good and save.”, Maria said.
Every lottery ticket costs one Euro. There are 10 lottery tickets, which will carry a yield of 60 Euros .
How big is the probability for one winning lottery ticket, if you are the first person and buy one lottery ticket? 2 blue points
How big is the probability for one winning lottery ticket, if you are the first person and buy 50 lottery tickets? 2 red points

it

“Cosa stai facendo?”, Bernd chiedeva a sua sorella. “Sto fabbricando un’ urna girevole molto particolare per la lotteria natalizia. Deve essere abbastanza grande per far entrare i 1000 biglietti bene e sicuri.”, diceva Maria.
Ogni biglietto della lotteria costa un Euro. Entro i biglietti ci sono 10 vincenti, ognuno rende un premio di 60 €.
Qual’è la probabilità per un biglietto vincente per chi compra per primo un biglietto? 2 punti blu
Qual’è la probabilità per un biglietto vincente, per chi compra come primo già 50 biglietti? 2 punti rossi

Lösung/solution/soluzione/résultat/Решение:

 Musterlösung von Karlludwig, vielen Dank. --> pdf <--


Aufgabe 4

688. Wertungsaufgabe

„Schau mal Mike. Ich habe einen Papierstreifen – AB=11 cm lang und 1 cm breit ausgeschnitten.

688

Die Punkte C, D und E habe ich so markiert, dass fast jede Streckenlänge von 1, 2, 3, …, 10 und 11 cm durch zwei dieser Punkte entstehen kann – nur eine Streckenlänge fehlt.“, sagte Lisa. Mike schaute sich den Streifen an und war ganz erstaunt. Er überlegte eine Weile, dann konnte er Lisa einen anderen 11 cm langen Streifen zeigen, der auch solch eine Einteilung hatte. Die kürzeste Strecke von 1 cm lag dabei aber nicht am Rand des Streifens.
Wie könnte der Streifen von Mike ausgesehen haben? 3 blaue Punkte
Bernd fand sogar einen Streifen von AB=17 cm Länge. Er hatte dort 4 Punkte - C, D, E und F – so verteilt, dass fast alle Strecken von 1 bis 17 cm gebildet werden konnten – maximal drei Streckenlängen dürfen fehlen. Wie sah der wohl aus? 4 rote Punkte

Termin der Abgabe 14.10.2021. Срок сдачи 14.10.2021. Ultimo termine di scadenza per l´invio è il 14.10.1921. Deadline for solution is the 14th. October 2021. Date limite pour la solution 14.10.2021. Soluciones hasta el 14.10.2021. Beadási határidő 2021.10.14. 截止日期: 2021.10.14 – 请用徳语或英语回答。

chin

第688题

688

“迈克,看!我剪了一张纸条,它的长AB是11厘米,宽是1厘米。点C、D 和E我是这样标注的:1,2,3... ...10以及11厘米这些线段长度,差不多每条都可以通过这些点中的其中两个点来呈现出来,只有一条线段的长度是缺失的。”丽莎说。
迈克看了纸条后,完全惊呆了。他思考了一会儿,然后他给丽莎看了另外一条11厘米长的也是这样的划分的纸条。不过1厘米长的最短的线段不是在纸条的边缘。
那么迈克的纸条看起来能是什么样子? 3个蓝点

贝恩德甚至也发现了一个AB为17厘米长的纸条。在那儿他是这样分配C,D, E, 和F四个点的:从1到17厘米的所有线段能够被标出,允许最多缺失三条线段的长度。
那么它看起来又是怎么样的呢? 4个红点

截止日期: 2021.10.14 – 请用徳语或英语回答。

rus

«Смотри, Майк. Я вырезала из бумаги полоску - АВ = 11 см в длину и 1 см в ширину.

688

Я отметила точки C, D и E таким образом, чтобы каждый отрезок длиной 1, 2, 3, ..., 10 и 11 см кроме одного может быть создан через две из этих точек », сказала Лиза. Майк посмотрел на полосу и был удивлён. Он подумал немного, потом смог показать Лизе другую полосу длиной 11 см, у которой тоже было такое разделение. Однако кратчайший отрезок в 1 см при этом не был на краю полосы.
Как могла бы выглядеть полоска Майка? 3 синих очка
Бернд даже нашёл полосу длиной AB = 17 см. Там у него были 4 точки - C, D, E и F - распределены таким образом, чтобы можно было сформировать почти все отрезки длиной от 1 до 17 см — максимально отрезки трёх длин могут отсутствовать. Как, пожалуй, она выглядела? 4 красных очка

hun

„Nézd csak Mike, kivágtam egy papírcsíkot, aminek AB=11 cm hosszú és 1 cm széles.

688

A C, Dés E pontot úgy jelöltem be, hogy csaknem minden szakaszhossz 1, 2, 3, …, 10 és 11 cm kettőn ezekből a pontokból létrejöhet, csak egy szakasz hiányzik.” Mike csodálkozva nézte a papírcsíkot. Gondolkodott egy darabig, aztán mutatott Lisának egy másik 11 cm hosszú csíkot, aminek hasonló felosztása volt. A legrövidebb, 1 cm-es szakasz azonban nem a csík szélére esett.
Hogyan nézhetett ki Mike szalagja? 3 kék pont
Bernd talált még egy AB=17 hosszú szalagot is. Ezen 4 – C,D, E és F – pontot így osztott el, hogy csaknem minden szakaszt 1-től 17 cm-ig le tudott képezni, maximum 3 szakaszhossz hiányzott. Hogy nézett ki ez? 4 piros pont

frz

"Regardes Mike. J'ai découpé une bande de papier - AB = 11 cm de long et 1 cm de large.

688

J'ai marqué les points C, D et E de manière à ce que chaque longueur de 1, 2, 3, ..., 10 et 11 cm puisse être créée à travers deux de ces points - il ne manque qu'une seule longueur .. » , dit Lisa. Mike a regardé la bande et a été étonné. Il a réfléchi un moment, puis il a pu montrer à Lisa une autre longueur de 11 cm de long, qui avait également une telle classification. La distance la plus courte de 1 cm n'était pas sur le bord de la bande.

A quoi aurait pu ressembler la longueur de Mike ? 3 points bleus

Bernd a même trouvé une longueur AB = 17 cm de long. Là, il y avait 4 points - C, D, E et F - répartis de manière que presque tous les tronçons de 1 à 17 cm puissent être formés. A quoi ressemblait-il? 4 points rouges

esp

"Mira Mike. He recortado una tira de papel, AB=11 cm de largo y 1 cm de ancho.

688

He marcado los puntos C, D y E para que casi cualquier longitud de tramo de 1, 2, 3, ..., 10 y 11 cm pueda ser creado por dos de estos puntos – solamente una longitud falta", dijo Lisa. Mike miró la tira y se quedó bastante sorprendido. Lo pensó durante un rato y luego pudo mostrarle a Lisa otra tira de 11 cm que también tenía esa división. Pero el tramo más corto de 1 cm no estaba en el borde de la tira.
¿Cómo podría haber sido la raya de Mike? 3 puntos azules
Bernd incluso encontró una tira de AB=17 cm de longitud. Había distribuido allí 4 puntos (C, D, E y F) para que se pudieran formar casi todas las distancias de 1 a 17 cm – pueden faltar 3 como máximo. ¿Qué aspecto tenía? 4 puntos rojos

en

“Look Mike. I did cut out a paper strip – AB=11 cm long and 1 cm wide.

688

I marked the points C, D and E that way, that nearly every line length from 1, 2, 3, …, 10 and 11 cm can be created through two of those points – only one line length is missing.”, Lisa said. Mike looked at the paper strip and was astonished. He thought for a while, than he was able to show Lisa another 11 cm long paper strip, which had the same scale too. The shortest line of 1 cm wasn't located at the edge of the paper strip.
How could the paper strip of Mike have looked like? 3 blue points
Bernd even found another paper strip of the length AB=17 cm. He allocated 4 points - C, D, E and F – that way, that nearly every line from 1 to 17 cm could be created – a maximum of three line lengths can be missing. How did it probably look like? 4 red points

it

“Guarda, Mike. Ho ritagliato una striscia di carta – AB = 11 cm e di una larghezza di 1 cm. Ho marcato i punti C, D e E nel modo che si trova quasi ogni misura 1, 2, 3, … , 10, 11 come tragitto entro due dei punti A, B, C, D, E. Manca solo una”, diceva Lisa.

688

Mike esaminava la striscia ed era del tutto stupefatto. Rifletteva per un certo tratto di tempo, poi poteva presentare un’altra striscia di carta, anche essa con una lunghezza di 11 cm. Il tragitto di 1 cm non si trovava però al bordo della striscia.
Come potrebbe apparire la striscia di Mike? 3 punti blu
Bernd trovava addirittura una striscia di una lunghezza AB = 17 cm. Aveva distribuito 4 punti C, D, E, F nel modo che si potevano trovare quasi tutti i tragitti entro 1 e 17 cm – possono mancare al massimo tre tragitti. Come appariva quella? 4 punti rossi

Lösung/solution/soluzione/résultat/Решение:

 Musterlösung von Paulchen Hunter, danke. --> pdf <--

 


Aufgabe 5

689. Wertungsaufgabe

deu

„Oh, ich sehe schon wieder mal Millimeterpapier vor dir liegen, da sollt ihr bestimmt das Eintragen von Funktionsbildern üben“, sagte Bernd zu seiner Schwester. „Du hast es fast richtig erfasst. Wir haben heute einfache Potenzfunktionen (y=f(x)=x^n) und Exponentialfunktionen (y=g(x)= n^x) verglichen. Es war aber nicht so viel Zeit, so dass nur n=2 bzw. n= 3 untersucht werden konnten.“, erwiderte Maria.
Welche Koordinaten haben die Schnittpunkte der Funktionen f(x) und g(x) für n = 2?
3 blaue Punkte, wenn nur abgelesen, wenn berechnet bis zu 5 blauen Punkten.
Die Koordinaten der Schnittpunkte der Funktionen f(x) und g(x) für beliebige n>1 ( n – natürliche Zahl) sind zu untersuchen. Wie viele Schnittpunkte haben solche Funktionen? Welche der Funktionen haben nur ganzzahlige Koordinaten bei Ihren Schnittpunkten? (3+2) rote Punkte

Termin der Abgabe 28.10.2021. Срок сдачи 28.10.2021. Ultimo termine di scadenza per l´invio è il 28.10.1921. Deadline for solution is the 28th. October 2021. Date limite pour la solution 28.10.2021. Soluciones hasta el 28.10.2021. Beadási határidő 2021.10.28. 截止日期: 2021.10.28 – 请用徳语或英语回答。

chin

第689题

“噢,我又看到你面前放着的方格纸了,你们应该又练习画函数图像了”。贝恩德对他妹妹说道。
“你差不多猜对了!我们今天对比了简单幂函数 (y=f(x)=x^n) 和指数函数 (y=g(x)= n^x)。但是因为没那么多时间,只能检测n=2 或者n=3。”玛丽雅回答道。

在n=2时,函数f(x) 和 函数g(x)交点的坐标是什么? 如果是看出来的,得到3个蓝点; 如果是计算出来的,可以得到5个蓝点。
对于任意n>1(n是自然数)的函数f(x) 和 g(x)交点的坐标是可以检测的 。
那么这些函数有几个交点?哪些函数在它们的交点处只有整数坐标? (3+2)个红点。

截止日期: 2021.10.28 – 请用徳语或英语回答。

rus

«О, я снова вижу миллиметровку, лежащую перед тобой, наверно вы должны упражняться в записи функциональных изображений», сказал Бернд своей сестре. «Ты почти правильно понял. Сегодня мы сравнили простые степенные функции (y = f(x) = xn) и экспоненциальные функции (y = g(x) = nx). Но времени было не так много, поэтому могли обследовать только n = 2 или n = 3 », ответила Мария. Каковы координаты точек пересечения функций f(x) и g(x) при n = 2? 3 синих очка, если только считаны, если рассчитаны до 5 синих очков. Необходимо исследовать координаты точек пересечения функций f(x) и g(x) для любого n > 1 (n - натуральное число). Сколько точек пересечения у таких функций? Какие из функций имеют только целочисленные координаты в точках пересечения? (3 + 2) красных очка

hun

„Már megint milliméterpapírt látok előtted, biztos a függvények rajzolását gyakorlod.” – mondta Bernd a nővérének. „Majdnem igazad van. Ma egyszerű hatványfüggvényeket (y=f(x)=x^n) és exponenciális függvényeket (y=g(x)= n^x) hasonlítottunk össze. De nem volt túl sok idő, így csak n=2 ill. n= 3 –t tudtuk megvizsgálni.” – válaszolta Mária.
Milyen koordinátákban metszik egymást a f(x) és g(x) függvények, ha n = 2. 3 kék pont, ha leolvassa, 5 kék pont, ha kiszámítja.
Az f(x) und g(x) tetszőleges n>1 függvények metszéspontjainak koordinátáit keressük (n természetes szám). Hány metszéspontja van az ilyen függvényeknek? A függvények közül melyiknek vannak csak egészszámú koordinátái a metszéspontokban? (3+2 piros pont)

frz

"Oh, je vois à nouveau du papier millimétré devant toi, vous devriez certainement vous entraîner à saisir des images fonctionnelles", a dit Bernd à sa sœur. « Tu as presque raison. Aujourd'hui, nous avons comparé des fonctions puissances simples (y=f(x)=x^n) et des fonctions exponentielles (y=g(x)=n x). Mais il n'y avait pas beaucoup de temps, donc seulement n = 2 ou n = 3 pouvaient être examinés », a répondu Maria.
Quelles sont les coordonnées des points d'intersection des fonctions f(x) et g(x) pour n = 2. Si uniquement lu, 3points bleus, si calculés jusqu'à 5 points bleus.
Les coordonnées des points d'intersection des fonctions f(x) et g(x) pour tout n > 1 (n - chiffre entier naturel) sont à examiner. Combien d'intersections ont de telles fonctions ? Laquelle des fonctions n'ont que des coordonnées entières à leurs intersections ? (3 + 2) points rouges

esp

"Oh, veo de nuevo papel cuadriculado delante de ti, seguro que debes practicar el dibujo de diagramas de funciones ahí", le dijo Bernd a su hermana. "Casi has acertado. Hoy hemos comparado funciones de potencia simples (y=f(x)=x^n) y funciones exponenciales (y=g(x)= n^x). Pero no había tanto tiempo, así que sólo se pudieron examinar n=2 y n= 3", respondió María.
Cuáles son las coordenadas de las intersecciones de las funciones f(x) y g(x) para n = 2. Se reciben 3 puntos azules si sólo se lee o hasta 5 puntos azules si se calcula.
Hay que examinar las coordenadas de las intersecciones de las funciones f(x) y g(x) para cualquier n>1 (n - número natural). ¿Cuántos puntos de intersección tienen estas funciones? ¿Cuál de las funciones tiene sólo coordenadas enteras en sus intersecciones? 3+2 puntos rojos

en

“Oh, I can see that you already have some coordinate paper in front of you, where you have have to practice inserting function pictures”, Bernd told his sister. “You did get it quite correctly. Today we compared simple power functions (y=f(x)=x^n) with exponential functions (y=g(x)= n^x). Sadly there wasn't enough time, so we could only analyze n=2 resp. n= 3.”, Maria answered.
Which coordinates do the points of intersection of the functions f(x) and g(x) for n = 2 have. 3 blue points, for just reading off, if calculated you can get up to 5 blue points.
The coordinates of the points of intersection of the functions f(x) and g(x) for random n>1 ( n – whole number) have to be analyzed. How many points of intersection do such functions have? Which of the functions do only have integer coordinates at their points of intersection? (3+2) red points

it

„Ah, vedo di nuovo la carta millimetrata davanti a te. Quindi dovete fare esercizi in eseguire dei grafi.”, Bernd diceva a sua sorella. “Ci sei quasi. Abbiamo rapportato funzioni del tipo (y=f(x)=x^n) con quelli del tipo (y=g(x)= n^x). Ma data che ci mancava il tempo, siamo arrivati solo a n = 2 e n = 3.”, Maria replicava.
Quale sono le coordinate dei punti di’intersezione delle funzioni f(x) e g(x) per n = 2 e n = 3? – 3 punti blu, se solo presi del diagramma, se vengono calcolati 5 punti blu.
Adesso si devono esaminare i punti d’intersezione delle funzioni f(x) e g(x) per n>1 (n - numero natural). Quanti punti d’intersezione hanno tale funzioni? Quale di loro hanno solo coordinate intere? (3 + 2 punti rossi)

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Maximillian, danke . --> pdf <--


Aufgabe 6

690. Wertungsaufgabe

deu

690

„Zwei Kreise, die sich schneiden, das sieht nicht gerade spektakulär aus.“, meinte Lisa zu Mike. „Ja und nein“.
AB = 12 cm, die Radien der Kreise betragen 3 bzw. 4 cm.
Wenn die Punkte A, B, C und D auf der X-Achse eines Koordinatensystems (Descartes) mit 01= 1 cm liegen und der Punkt C die Koordinaten (0;0) hat, welche Koordinaten haben dann die Punkte A, D und B? 2 blaue Punkte. Die Berechnung der Koordinaten von E bringt noch mal 3 blaue Punkte.
Die rechnerische Ermittlung der Winkel AEB, CED und DEB wird mit 9 roten Punkten belohnt.

Termin der Abgabe 04.11.2021. Срок сдачи 04.11.2021. Ultimo termine di scadenza per l´invio è il 04.11.1921. Deadline for solution is the 4th. November 2021. Date limite pour la solution 04.11.2021. Soluciones hasta el 04.11.2021. Beadási határidő 2021.11.04. 截止日期: 2021.11.04 – 请用徳语或英语回答

chin

第690题

690

“这两个相交的圆看起来并不特别。” 丽莎对迈克说。
“你说的对,但也不全对。”

AB=12厘米,两个圆的半径分别是3厘米和4厘米。
如果点A、B、C和D都在一个坐标系的X轴上,其中点C的坐标为(0,0),那么点A、D和B的坐标是多少? 2个蓝点。
如果计算出点E的坐标又可以得到3个蓝点。
计算出∠AEB, ∠CED und ∠DEB的度数,可以得到9个红点奖励。

截止日期: 2021.11.04 – 请用徳语或英语回答。

rus

690

«Двe пересекающихся oкружности, это не выглядит впечатляющим», сказала Лиза Майку. "Да и нет".
AB = 12 см, радиусы окружностей 3 см и 4 см соответственно.
Если точки A, B, C и D лежат на оси X системы координат (Декарта) с 01 = 1 см и у точки C координаты (0; 0), то каким координатам соответствуют тогда точки A, D и B? 2 синих очка. Вычисление координат E приносит ещё 3 синих очка.
Вычислительное определение углов ∢AEB, ∢CED и ∢DEB награждается 9 красными очками.

hun

690

„Két egymést metsző kör nem néz ki túl érdekesnek.” . mondta Lisa Mikenak. „Igen is meg nem is.” AB = 12 cm, a körök sugara 3 és 4 cm.
Ha az A,B, C és D pontok a koordináta rendszer X tengelyén 01= 1 cm vannak és a C pont koordinátája (0;0), mik az A, D és B pont koordinátái? 2 kék pont
Az E pont koordinátáinak kiszámítása plusz 3 kék pont. Az AEB, CED és DEB szögek számtani megadása 9 piros pont.

frz

690

Deux cercles qui se croisent, ça n'a pas l'air spectaculaire. », a déclaré Lisa à Mike. "Oui et non".
AB = 12 cm, les rayons des cercles sont respectivement de 3 et 4 cm.
Si les points A, B, C et D se trouvent sur l'axe X d'un système de coordonnées (Descartes) avec 01 = 1 cm et le point C a pour coordonnées (0;0), quelles coordonnées ont les points A, D et B? 2 points bleus. Le calcul des coordonnées de E apporte encore 3 points bleus.
La détermination mathématique des angles AEB, CED et DEB sera récompensée par 9 points rouges.

esp

690

"Dos círculos que se cruzan, eso no parece espectacular", le dijo Lisa a Mike. "Sí y no.”
AB = 12 cm, los radios de los círculos son 3 y 4 cm respectivamente. Si los puntos A, B, C y D se encuentran en el eje X de un sistema de coordenadas (Descartes) con 01= 1 cm y el punto C tiene las coordenadas (0;0), ¿qué coordenadas tienen los puntos A, D y B? 2 puntos azules. El cálculo de las coordenadas de E aporta otros 3 puntos azules.
El cálculo de los ángulos AEB, CED y DEB se premia con 9 puntos rojos.

en

690

“Two circles, which intersect, this doesn't look spectacular.”, Lisa told Mike. “Yes and no”.
AB = 12 cm, the radii of the circles are 3 resp. 4 cm.
If the points A, B, C and D are situated on the x-axis of a coordinate system (Descartes) with 01= 1cm and point C has the coordinates (0;0), which coordinates do the points A, B and C have? 2 blue points.
Calculating the coordinates of E brings you another 3 blue points.
The arithmetical calculation of the angles AEB, CED and DEB is rewarded with 9 red points.

it

690

Due cerchi che si intersecano; non mi sembra essere molto spettacolare.”, Lisa diceva a Mike. “Sì e no.”
AB = 12 cm, I raggi dei cerchi sono 3 rispettivamente 4 cm.
Se I punti A, B, C e D sono situati sulla asse delle ascisse di un sistema cartesiano ed il punto C ha le coordinate (0;0), quale sono le coordinate dei punti A, D e B? 2 punti blu
Il calcolo delle coordinate di E vale altri 3 punti blu.
La calcolazione degli angoli AEB, CED e DEB viene premiato con 9 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Volker Bertram, danke. --> pdf <--


Aufgabe 7

691. Wertungsaufgabe

deu

Der Opa von Bernd und Maria hatte wieder einmal einen Klassiker mitgebracht.

691

„Schaut, wie schon oft habe ich das berühmte rechtwinklige Dreieck ABC (3x4x5 cm) gezeichnet. Neu ist der Punkt M. Dieser ist der Mittelpunkt der Kathete AB und zugleich der Mittelpunkt des Kreises durch den Punkt C. Man erkennt zwei grüne und vier rote Quadrate.“, sagte der Opa. „Alles klar.“
Wie groß sind Umfang und Flächeninhalt des schraffierten Sechsecks AEFCGH? 4 blaue Punkte
Man sieht ganz schnell, dass die Summe der Flächeninhalte der vier roten Quadrate gleich der Summe der Flächeninhalte der beiden grünen Quadrate ist – Nachweis durch Berechnung: 3 rote Punkte. Gilt diese Flächengleichheit auch, wenn man die Lage des Punktes C (oberhalb von AB) verändert? (Im Allgemeinen bleibt dabei das Dreieck ABC nicht rechtwinklig, der Radius des Kreises ändert sich und folglich auch die Größe der linken roten Quadrate.)
Falls ja, wie zeigt man das, wenn nein, reicht ein Gegenbeispiel – 4 rote Punkte

Termin der Abgabe 11.11.2021. Срок сдачи 11.11.2021. Ultimo termine di scadenza per l´invio è il 11.11.1921. Deadline for solution is the 11th. November 2021. Date limite pour la solution 11.11.2021. Soluciones hasta el 11.11.2021. Beadási határidő 2021.11.11. 截止日期: 2021.11.11 – 请用徳语或英语回答

chin

第691题

贝恩德和玛丽雅的爷爷又带来了经典的题。

691

“看,正如以前经常做的那样,我又画了一个众所周知的直角三角形ABC(边长分别为3,4,5厘米)。不一样的是点M,它既是边AB的中点,
也是过点C的圆的圆心。这样又得到了两个绿色的和四个红色的正方形。”爷爷说道。
“明白。”
那么带条格的六边形AEFCGH的周长和面积是多少? 4个蓝点
人们能很快看出来四个红色正方形的面积之和等于两个绿色正方形的面积之和。请通过计算来证明。 3个红点
如果边AB上方的点C的位置发生改变,那么面积之和相等还适用吗?如果适用,请证明;如果不适用,请举一个反例。4个红点

截止日期: 2021.11.11 – 请用徳语或英语回答

rus

Дед Бернда и Марии снова принёс с собой классическую задачу.

691

«Послушайте, я нарисовал как уже часто в прошлом знаменитый прямоугольный треугольник ABC (3х4х5 см). Точка M новая. Она - центр катета AB и одновременно центр окружности, проходящей через точку C. Вы можете увидеть два зелёных и четыре красных квадрата», сказал дедушка. "Все ясно."
Каковы периметр и площадь заштрихованного шестиугольника AEFCGH? 4 синих очка
Можно очень быстро увидеть, что сумма площадей четырёх красных квадратов равна сумме площадей двух зелёных квадратов - доказательство вычислением: 3 красных очка.
Имеет ли силу это равенство площадей и тогда, если положение точки C (поверх AB) изменить? (При этом в общем случае треугольник ABC не остаётся прямоугольным, радиус окружности меняется и следовательно также величина левых красных квадратов.)
Если да, то как это показать, если нет, то достаточно привести один контрпример - 4 красных очка

hun

Bernd és Mária nagyapja megint egy klasszikust hozott.

691

„Látjátok milyen sokszor rajzoltam már a híres jobbszögű háromszöget (3x4x5 cm). Újdonság most az M pont. Ez az AB befogó középpontja és egyben a C ponton érintő kör középpontja. Láthatunk két zöld és négy piros négyzetet. „ – mondta nagyapa. „Értjük.”
Mekkora a kerülete és a területe a csíkozott AEFCGH hatszögnek? 4 kék pont
Láthatjuk azonnal, hogy a négy piros négyzet felületének összege megegyezik a két zöld négyszögével. Ennek bizonyítása számítással 3 piros pont.
Érvényes ez a területi egyezés akkor is, ha a C pont helyzetét (AB felé) megváltoztatjuk? Amennyiben igen, bizonyítsuk, ha nem, elég egy ellenpélda. 4 piros pont

frz

Le grand-père de Bernd et Maria avait encore une fois apporté un grand classique.

691

« Regardez, comme je l'ai souvent fait auparavant, j'ai dessiné le fameux triangle rectangle ABC (3x4x5 cm). Le point M est nouveau. C'est le centre de la jambe AB et en même temps le centre du cercle passant par le point C. Vous pouvez voir deux carrés verts et quatre rouges », a déclaré le grand-père. "Entendu."
Quel est le périmètre et l'aire de l'hexagone hachuré AEFCGH ? 4 points bleus
On voit très vite que la somme des aires des quatre carrés rouges est égale à la somme des aires des deux carrés verts - preuve par calcul : 3 points rouges. Cette égalité d'aire s'applique-t-elle également si la position du point C (au-dessus de AB) est modifiée ?
Si oui, comment le montrer, sinon, un contre-exemple suffit - 4 points rouges

esp

El abuelo de Bernd y María había traído una vez más un clásico.

691

"Mira, como ya he hecho muchas veces, he dibujado el famoso triángulo rectángulo ABC (3x4x5 cm). La novedad es el punto M. Éste es el centro del cateto AB y al mismo tiempo el centro de la circunferencia que pasa por el punto C. Puedes ver dos cuadros verdes y cuatro rojos", dijo el abuelo. "Muy bien".
¿Cuál es el perímetro y el área del hexágono rayado AEFCGH? 4 puntos azules.
Se puede ver rápidamente que la suma de las áreas de los cuatro cuadrados rojos es igual a la suma de las áreas de los dos cuadrados verdes - la prueba por cálculo produce 3 puntos rojos. ¿Esta igualdad de áreas también se aplica si se cambia la posición del punto C (sobre AB)? Si la respuesta es afirmativa, ¿cómo se demuestra? Si es negativa, basta con un contraejemplo: 4 puntos rojos.

en

Bernd's and Maria's grandpa once again brought another classic with him.

691

“Look, like many times before I drew the famous right-angled triangle ABC (3x4x5 cm). New is point M. It is the centre of side AB and at the same centre of the circle that intersects through point C. You can see two green and four red squares”, grandpa said. “Alright.”
How big are perimeter and area of the hatched hexagon AEFCGH? 4 blue points
You can see very quickly, that the sum of the areas of the four red squares are equal to the sum of the areas of the two green squares – proof through calculation: 3 red points. Do you have the same equality of the areas, if the position of point C (above AB) gets changed?
If yes, how can you show this, if no, one counterexample is enough – 4 red points

it

Il nonno di Bernd e Maria aveva di nuovo portato un classico.

691

“Guardate, ho disegnato il famoso triangolo rettangolare ABD (3x4x5 cm)- Una novità è il punto M. Questo è il centro del cateto AB e contemporaneamente anche il centro del cerchio che passa per il punto C. Si vedono due quadrati verdi e quattro rossi.”, diceva il nonno. “Abbiamo capito.”
Quale sono la circonferenza e l’area del’ esagono AEFCGH tratteggiato ? 4 punti blu
Si vede facilmente, che la somma delle aeree dei quattro quadrati rossi è uguale a questo dei quadrati Verdi. – Prova tramite un calcolo – 3 punti rossi.
Questa equivalenza, vale anche se si cambia la posizione del punto C (sopra AB)? Se sì, come si dimostra quedsto fatto. Se no, basta un esempio che mostra il contrario. – 4 punti rossi

Lösung/solution/soluzione/résultat/Решение:

Musterlösungen von calvin --> pdf <-- und Hans --> pdf <--, danke.


Aufgabe 8

692. Wertungsaufgabe

deu

„Was liest du denn?“, fragte Maria ihren Bruder. „Das ist das Manuskript „Zauberhafte Zahlen“ von James Horath.“ „Den Namen habe ich noch nie gehört.“ „Das glaube ich dir sofort, aber trotzdem kennst du den Mann“, antwortete Bernd mit einem vielsagenden Lächeln auf den Lippen.
Zu den zauberhaften Zahlen gehören die natürlichen Zahlen n (n>9), die durch ihre Quersumme teilbar sind. Beispiele: 12, Quersumme 3, 12 : 3 = 4. 24, Quersumme 6, 24 : 6 = 4. 131052, Quersumme 12, 131052 : 12 = 10921. Die 31 gehört nicht dazu, deren Quersumme ist 4. 4 ist kein Teiler von 31.
131052, 131053, 131054, 131055 und 131056 sind sogar 5 aufeinanderfolgende Zahlen mit der Eigenschaft, dass die Zahl durch ihre Quersumme teilbar ist.
Für drei blaue Punkte sind drei aufeinanderfolgende solcher Zahlen zu finden – eine Lösung reicht.
Für drei rote Punkte sind vier aufeinanderfolgende solcher Zahlen zu finden – eine Lösung reicht.
Anmerkung: Die kleinsten Zahlen bei rot und blau sind dreistellig.

Termin der Abgabe 18.11.2021. Срок сдачи 18.11.2021. Ultimo termine di scadenza per l´invio è il 18.11.1921. Deadline for solution is the 18th. November 2021. Date limite pour la solution 18.11.2021. Soluciones hasta el 18.11.2021. Beadási határidő 2021.11.18. 截止日期: 2021.11.18 – 请用徳语或英语回答

chin

第692题

“你在看什么?”玛丽雅问她哥哥。
“这是詹姆斯·霍拉斯(James Horath)的手稿《魔法数字》。”
“这个名字我还从没听说过。”
“我相信你!但尽管如此,你还是认识这个人的。” 伯恩德回答道,他的唇上带着一抹意味深长的微笑。

数字和能够被整除的自然数 n (n> 9),就是属于这类神奇数字。
例如: 12的数字和是3, 12:3 = 4;
24的数字和是6,24:6 = 4;
131052的数字和是12,131052:12 = 10921。
但是不包括31,31的数字和是4,4不是31的除数。
131052, 131053, 131054, 131055 和 131056 是 5 个连续的数字,具有被数字和整除的特性。

请找出三个连续的这样的数字,得到3个蓝点 – 一个答案就足够了。
找出四个连续的这样的数字,得到3个红点 – 一个答案就足够了。

注意:红色和蓝色中的最小的数字是三位数。

截止日期: 2021.11.18 – 请用徳语或英语回答

rus

«Что ты читаешь?» спросила Мария своего брата. «Это рукопись «Волшебные числа» Джеймса Хората». «Я никогда не слышалa этого имени». «Я сразу верю тебе, но ты всё равно знаешь этого человека», ответил Бернд с многозначительной улыбкой на лице.
Магические числа включают натуральные числа n (n> 9), которые делятся на их сумму цифр числа.
Примеры:
12, сумма цифр числа 3, 12 : 3 = 4.
24, сумма цифр числа 6, 24 : 6 = 4.
131052, сумма цифр числа 12, 131052: 12 = 10921.
31 не включается, сумма цифр числа 4, а 4 не является делителем 31.
131052, 131053, 131054, 131055 и 131056 - это даже пять последовательных чисел с тем свойством, что число делится на его сумму цифр.
Для трёх синих очков нужно найти таких чисел три подряд - достаточно одного решения.
Для трёх красных очков нужно найти таких чисел четыре подряд - достаточно одного решения.
Примечание: Наименьшие числа для красных и синих очков являются трёхзначными.

hun

„Mit olvasol?” – kérdezte Mária a bátyját. „Ez egy jegyzet a „varázslatos számokról” James Horath-tól. „Sose hallottam a nevét.” „Elhiszem, ennek ellenére biztos ismered ezt az embert.” – válaszolta Bernd sejtelmes mosollyal.
A varázslatos számokhoz olyan természetes számok tartoznak, melyek a saját összegükkel oszthatók. Például: 12 összege 3, 3, 12 : 3 =4. 24 összege 6, 24 : 6 = 4. 131052 összege 12, 131052 : 12 = 10921. A 31 nem tartozik ide, összege 4. 31 nem osztható 4-gyel.
131052, 131053, 131054, 131055 és 131056 öt egymást követő szám, melyek oszthatók az összegükkel.
Három kék pontért találjon három ilyen egymást követő számot, egy megoldás elegendő.
Három piros pontért nevezzen meg negy ilyen számot, egy megoldás elég.
Megjegyzés: a legkisebb számok a piros és kék feladatnál három jegyűek.

frz

« Qu'est-ce que tu lis ? » demanda Maria à son frère. " C'est le manuscrit "Nombres magiques" de James Horath." "Je n'ai jamais entendu ce nom." "Je te crois sur parole, mais tu connais cet homme", répondit Bernd avec un sourire sur son visage.
Les nombres magiques comprennent les nombres naturels n (n> 9), qui sont divisibles par leur somme de contrôle. Exemples : 12 somme de contrôle 3, 12 : 3 = 4. 24, somme de contrôle 6, 24 : 6 = 4. 131052 somme de contrôle 12, 131052 : 12 = 10921. 31 n'est pas inclus, la somme de contrôle est 4.4 qui n'est pas un diviseur de 31.
131052, 131053, 131054, 131055 et 131056 sont tout même 5 nombres consécutifs avec la propriété du nombre divisible par sa somme de contrôle.
Pour trois points bleus, il faut trouver trois nombres consécutifs - une solution suffit.
Pour trois points rouges, il faut trouver quatre nombres consécutifs de ce type - une solution suffit.
Remarque : les plus petits nombres pour le rouge et le bleu sont à trois chiffres.

esp

"¿Qué estás leyendo?", le preguntó María a su hermano. "Es el manuscrito 'Números mágicos' de James Horath". "Nunca había oído ese nombre". "Te tomo la palabra, pero, aun así, ya conoces al hombre", respondió Bernd con una significativa sonrisa en los labios.
Los números mágicos incluyen los números naturales n (n>9) que son divisibles por su suma de dígitos. Ejemplos: 12 suma de dígitos 3, 12 : 3 = 4. 24, suma de dígitos 6, 24 : 6 = 4. 131052 suma de dígitos 12, 131052 : 12 = 10921. 31 no pertenece a ellos, su suma de comprobación es 4. 4 no es un divisor de 31.
131052, 131053, 131054, 131055 y 131056 son 5 números consecutivos con la propiedad de que los números son divisibles por sus sumas de dígitos.
Para tres puntos azules, hay que encontrar tres números consecutivos de este tipo - una solución es suficiente.
Para tres puntos rojos, encuentra cuatro números consecutivos de este tipo - una solución es suficiente.
Nota: Los números más pequeños en rojo y azul tienen tres dígitos.

en

“What are you reading there?“”, Maria asked her brother. “That's the manuscript „Magical numbers“ by James Horath.” “I haven't heard that name yet.” “I believe you straight away, but you still know this man.”, Bernd answered with a meaningful expression on his face.
The magical numbers include the whole numbers n (n>9), which can be divided by their digit sum. Example: 12 digit sum 3, 12 : 3 =4. 24, digit sum 6, 24 : 6 = 4. 131052 digit sum 12, 131052 : 12 = 10921. 31 doesn't fit in, its digit sum is 4. 4 isn't a factor of 31.
131052, 131053, 131054, 131055 and 131056 are even 5 consecutive numbers with the feature, that the number can be divided by its digit sum.
For three blue points you have to find three such consecutive numbers – one solution is enough.
For three red points you have to find four such consecutive numbers – one solution is enough.
Footnote: The smallest numbers for red and blue do have three digits.

it

„Cosa stai leggendo?“, Maria chiedeva a suo fratello. „È il libro ‘Numeri incantevoli’ di James Horath.”
„Mai sentito questo nome.” „Ci credo, ma ugualmente conosci quest’uomo”, Bernd replicava con un sorriso parlante sulle labbra.
Ai numeri incantevoli appartengono I numeri naturali n (n>9), che sono divisibili della loro somma delle cifre. Esempi: 12 somma delle cifre 3, 12:3=4. 24, somma delle cifre 6, 24:6=4. 131052 somma delle cifre 12, 131052:12=10921. IL numero 31 invece non f aparte di questi numeri; la loro somma delle cifre è 4. 4 non divide 31.
131052, 131053, 131054, 131055 è 131056 sono addirittura 5 numeri consecutivi con questa caratteristica.
Per tre punti blu sono da trovare tre tale numeri consecutivi – basta un’ esempio.
Per tre punti rossi sono da trovare quattro tale numeri consecutivi – basta un’esempio
Nota bene: I numeri che si devono trovare hanno almeno tre cifre.

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Gerhard Palme, vielen Dank. --> pdf <--


Aufgabe 9

693. Wertungsaufgabe

deu

„In dem Manuskript „Zauberhafte Zahlen“ habe ich etwas richtig Falsches entdeckt.“, sagte Maria, nachdem ihr Bruder seiner Schwester den Lesestoff weitergereicht hatte. „Ja, du hast richtig gehört, da wird es falsch gemacht, aber das Ergebnis ist dann doch richtig“.
Das Vertauschen und falsche Kürzen.
182/819 = 218/891 hier sind also Ziffern vertauscht, aber der Bruch bleibt. Streichst du nun im Zähler und Nenner die gleichen Ziffern (falsches Kürzen) so bleibt das Ergebnis doch richtig.182/819    =  218/981 = 2/9
3 blaue Punkte gibt es, wenn man einen weiteren Bruch x findet, dessen Zähler und Nenner jeweils dreistellig sind. Die Ziffern in Zähler und Nenner lassen sich vertauschen und auch nach dem falschen Kürzen darf sich der Wert des Bruches (4/7) nicht ändern. Sollte die Aufgabenstellung mehrere Lösungen haben, so reicht die Angabe eines Beispiels.
Falsches Kürzen geht auch für (a³ + b³)/(a³ + c³) = (a+b)/(a+c)
Beispiel: (40³ + 25³)/(40³ + 15³) = (40 + 25)/(40 + 15)
Zu zeigen ist, dass man a und b frei wählen kann und man nur bei der Wahl von c etwas beachten muss, damit (a³ + b³)/(a³ + c³) = (a+b)/(a+c) gilt. 3 rote Punkte

Termin der Abgabe 25.11.2021. Срок сдачи 25.11.2021. Ultimo termine di scadenza per l´invio è il 25.11.1921. Deadline for solution is the 25th. November 2021. Date limite pour la solution 25.11.2021. Soluciones hasta el 25.11.2021. Beadási határidő 2021.11.25. 截止日期: 2021.11.25 – 请用徳语或英语回答

chin

第693题

“在《魔法数字》手稿中我发现了一些不对的地方,” 玛丽雅在她哥哥把阅读材料传给她妹妹之后说道。“是的,你没听错,在这儿它们被做错了,但结果却是对的”。

交换与错误的缩小。
182/819 = 218/981, 这里的数字被交换了,但分数仍然和之前一样。
去掉分子和分母中相同的数字(错误的缩小),结果保持不变。
182/819 = 218/981  = 2/9

如果你能找到另外一个分子和分母都是三位数的这样的一个分数 x,把分子和分母中的数字交换并错误的缩小之后,分数值(4/7)仍然保持不变,你会得到3个蓝点。
如果有很多答案,给出一个例子就可以了。

错误的缩小也适用于 (a³ + b³) / (a³ + c³) = (a + b) / (a + c)形式。
例如:(40³ + 2

 

5³) / (40³ + 15³) = (40 + 25) / (40 + 15)
请举出一个例子,a和b可以自由选择,人们只有选择c时需要注意,要满足(a³+b³)/(a³+c³)=(a+b)/(a+c)这个式子成立。3个红点

截止日期:2021.11.25 - 请用德语或英语回答

rus

«Я обнаружила что-то действительно неправильное в рукописи «Волшебные числа», сказала Мария после того, как свой брат передал материалы для чтения своей сестре.
«Да, ты не ослышался, там кое-что будет сделано неправильно, но результат всё-таки правильный».
Перестановка и неправильное сокращение.
182/819 = 218/891 здесь цифры меняются местами, но дробь остаётся. Если вы удалите одинаковые цифры в числителе и знаменателе (неправильное сокращение), результат дроби всё равно будет правильным. 182/819 = 218/981  = 2/9
Если ты найдёшь другую дробь x, числитель и знаменатель которой являются трёхзначными, получишь 3 синих очка. Цифры в числителе и знаменателе можно менять местами, и значение дроби (4/7) не должно изменяться даже после неправильного сокращения. Если у задачи есть несколько решений, достаточно привести один пример.
Неправильное сокращение также работает для (a³ + b³) / (a³ + c³) = (a + b) / (a + c)
Пример: (40³ + 25³) / (40³ + 15³) = (40 + 25) / (40 + 15)
Необходимо показать, что можно свободно выбирать a и b, и нужно только что-то учитывать при выборе c, чтобы выполнялось (a³ + b³) / (a³ + c³) = (a + b) / (a + c) . 3 красных очка

hun

„A Varázslatos számok című kéziratban valami nagyon helytelent fedeztem fel.” – mondta Mária, miután a bátyja a húgának az olvasmányt továbbította. „Igen, jól hallottad, rosszul csinálták, de a végeredmény mégis helyes lett.”
A felcserélés és rossz rövidítés.
182/819 = 218/981 itt tehát a számokat felcserélték, de az osztás maradt. Lehúzod a számlálóban és a nevezőben az ugyanolyan számokat (hamis rövidítés) az eredmény mégis helyes marad. 182/819 = 218/981 = 2/9
3 kék pont, ha olyan további törtet talál, aminek a számlálója és nevezője három számjegyű, a számokat fel lehet cserélni és hamis rövidítés után a tört értéke nem változik. Amennyiben a feladatnak több megoldása van, elegendő egy példa megadása.
A hamis rövidítés mehet pl. így is: (a^3 + b^3)/(a^3 + c^3) = (a+b)/(a+c)
Példa: (40^3 + 25^3)/(40^3 + 15^3) = (40 + 25)/(40 + 15)
Mutassa meg, hogy ha a és b szabadon választott és csak a c kiválasztásánál kell valamire figyelni, hogy (a^3 + b^3)/(a^3 + c^3) = (a+b)/(a+c) érvényes legyen, 3 piros pontot ér.

frz

« J’ai découvert quelque chose de vraiment faux dans le manuscrit « Nombres magiques »», a déclaré Maria après que son frère ait transmis le matériel de lecture à sa sœur. "Oui, tu as bien entendu, c'est mal fait, mais le résultat est correct quand même".
Mélange et abréviation incorrecte.
182/819 = 218/981 ici les chiffres sont échangés, mais la fraction reste. Si tu supprimes les mêmes chiffres au numérateur et au dénominateur (abréviation incorrecte), le résultat sera toujours correct. 182/819 = 1 8 2/8 1 9  = 2/9
Il y a 3 points bleus si on trouve une autre fraction x dont le numérateur et le dénominateur sont chacun à trois chiffres. Les chiffres du numérateur et du dénominateur peuvent être intervertis et la valeur de la fraction (4/7) ne doit pas changer même après une mauvaise abréviation. Si l'exercice a plusieurs solutions, il suffit de donner un exemple.
Une abréviation incorrecte fonctionne également pour (a³ + b³) / (a³ + c³) = (a + b) / (a ​​+ c)
Exemple : (40³ + 25³) / (40³ + 15³) = (40 + 25) / (40 + 15)
Il faut montrer que l'on peut choisir librement a et b et qu'il suffit de prendre en compte quelque chose lors du choix de c, de sorte que (a³ + b³) / (a³ + c³) = (a + b) / (a ​​+ c) est vrai. 3 points rouges

esp
"Encontré algo realmente malo en el manuscrito "Números mágicos"", dijo María después de que su hermana le pasara la lectura. "Sí, has oído bien, allí se hace mal, pero luego el resultado es correcto".
El intercambio y el acortamiento equivocado.
182/819 = 218/981 aquí, los dígitos se han intercambiado, pero la fracción se mantiene. Si ahora se tachan los mismos dígitos en el numerador y el denominador (acortamiento erróneo), el resultado sigue siendo correcto.182/819 = 218/891 = 2 1 8/ 9 8 1 = 2/9
Obtienes 3 puntos azules si encuentras otra fracción x cuyo numerador y denominador tengan tres dígitos cada uno. Los dígitos del numerador y del denominador pueden intercambiarse e incluso después del acortamiento erróneo, el valor de la fracción (4/7) no debe cambiar. Si el problema tiene varias soluciones, basta con dar un ejemplo.
El acortamiento incorrecto también funciona para (a3 + b3)/(a3 + c3) = (a+b)/(a+c).
Ejemplo: (403 + 253)/(403 + 153) = (40 + 25)/(40 + 15)
Demuestre que puede elegir a y b libremente y que sólo tiene que considerar algo al elegir c, de modo que (a3+ b3)/(a3 + c3)= (a+b)/(a+c) es válido. 3 puntos rojos

en

“Inside the manuscript 'Magical Numbers' I discovered something wrong”, Maria said, after her brother gave the reading material to his sister. “Yes you did listen right, it's done wrong, but the result is still correct.”
Interchange and wrong reduction of the fraction.
182/819 = 218/981 so here digits were switched, but the fraction still remains. If you delete the same digits in numerator and denominator (wrong reduction of the fraction), the result will still be correct. 182/819 = 1 8 2/8 1 9  = 2/9
3 blue points you will get, if you find another fraction x, of which nominator and denominator are each three-digit. The digits in nominator and denominator can be switched and even after the wrong reduction of the fraction the value of the fraction (4/7) mustn't change. If there are more then one solution, giving one example is enough.
Wrong reduction of the fraction is possible for (a³ + b³)/(a³ + c³) = (a+b)/(a+c) too.
Example: (40³ + 25³)/(40³ + 15³) = (40 + 25)/(40 + 15)
You have to show, that you can choose a and b freely and you only have to consider the correct choice of c, that (a³ + b³)/(a³ + c³) = (a+b)/(a+c) applies. 3 red points

it

„Nel libro ‘numeri incantevoli’ ho trovato un vero lapsus.”, Maria diceva dopo aver ricevuto il testo da suo fratello. „Hai sentito bene; il calcolo è sbagliato, eppure il risultato è corretto.”
Lo scambio di cifre e la semplificazione falsa di frazioni:
182/819 = 218/981; quindi le cifre sono scambiate, ma la frazione rimane (ma non ha però più lo stesso valore – quindi il segno di uguale è sbagliato). Se invece venono cancellati le stesse cifre nel numeratore e nel denominatore (semplificazione falsa), il risultato è corretto.
182/819 = 218/981 = 2/9
3 punti blu vengono dati, se si trova un’altra frazione x, del quale numeratore e denominatore abbiano tre cifre ognuno. Le cifre possono essere scambiate ed anche dopo la semplificazione falsa, il valore della frazione (4/7) non si deve cambiare. Nel caso che siano alcune soluzioni possibili, ne basta uno.
Una semplificazione falsa funziona anche nel caso (a3+b3)/(a3+c3) = (a+b)/(a+c).
Per esempio: (403+253)/(403+153) = (40+25)/(40+15).
Per 3 punti rossi è da dimostrare, che a e b possano essere scelte liberamente, mentre per scegliere c bisogna stare attento a qualcosa per assicurare che valga (a3+b3)/(a3+c3) = (a+b)/(a+c).

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Hans, danke. --> pdf <--


Aufgabe 10

694. Wertungsaufgabe

deu

„Na kommt, einen oder zwei „Zahlenzauber“ vertragen wir noch“, meinte Mike. „Okay!“

694

Nun ja, immer gilt das mit der Gleichheit von gemischtem Bruch und dem Produkt nicht, dazu die Vieren des Beispiels einfach durch 2 Sieben ersetzen.
Wenn eine natürliche Zahl a (a>0) gewählt wird, wie muss dann das b gewählt werden, so dass die allgemeine Gleichung stimmt? 3 blaue Punkte.
Aus der Welt der Logarithmen. Für den natürlichen Logarithmus gilt ln((81/8) - 9) = ln (81/8) – ln 9
Allgemein: ln((a/b) - c) = ln (a/b) – ln c. Das gilt allerdings nicht immer, aber wenn ich c > 1 vorgebe, wie müssten dann a und b gewählt (berechnet) werden, damit die Gleichung stimmt? 3 rote Punkte.

Termin der Abgabe 02.12.2021. Срок сдачи 02.12.2021. Ultimo termine di scadenza per l´invio è il 02.12.1921. Deadline for solution is the 2th. December 2021. Date limite pour la solution 02.12.2021. Soluciones hasta el 02.12.2021. Beadási határidő 2021.12.02. 截止日期: 2021.12.02 – 请用徳语或英语回答

chin

第694题

“过来看,我们还可以操纵一、两个数字魔法。”迈克说。
“好的!”
等式 694 1,基本方程式形式是:694 2
当然这个混合分数等式不是一直成立。例如把例题中等式两边的4换成7,这个等式就不成立了。
如果已经选择了一个自然数a (a>0),为了使上述方程式成立,那么人们怎么选择b呢? 3个蓝点。

来自于对数的世界。
对于一个自然对数,等式 ln((81/8)- 9) = ln(81/8)–ln 9,基本方程式形式是:ln((a/b)- c) = ln(a/b)–ln c。
这个方程式也不是一直成立的。但是如果我指定 c > 1,为了使这个方程成立,那么a和b应该如何选择? 3个红点。

截止日期至2021年12月2号

rus

«Давай, мы все ещё выдержим один или два «фокуса из мира чисел»», сказал Майк.
«OK!, 694 1 в общем 694 2 .
Мм да, это равенство смешанной дроби и произведения не всегда имеет место , просто замените четвёрки в примере двумя семёрками.» Если выбрано натуральное число a (a > 0), как нужно выбрать b, чтобы общее уравнение было правильным? 3 синих очка. Из мира логарифмов: Для натурального логарифма имеет место ln ((81/8) - 9) = ln (81/8) - ln 9. В общем: ln ((a / b) - c) = ln (a / b) - ln c. Это не всегда верно, но если я задам c > 1, как должны быть выбраны (рассчитаны) a и b, чтобы уравнение было правильным? 3 красных очка.

hun

„Na gyere, egy vagy két varázsszámot tudok még mutatni.” – mondta Mike. „Jó.”

694

Hát igen, nem mindig érvényes az egyenlőség a vegyes törteket és eredményt illetően, ehhez a példa négyeseiben egyszerűen kettővel a hetest pótoljuk.
Amennyiben egy (a>0) természetes számot választunk, hogyan kell kiválasztani a b számot, hogy az általános egyenlőség meglegyen? 3 kék pont
A logaritmus világából. A természetes logaritmusra igaz ln((81/8) - 9) = ln (81/8) – ln 9.
Általánosságban: ln((a/b) - c) = ln (a/b) – ln c. azonban ez nem mindig érvényes. Ha c > 1 –t megadom, akkor mekkora legyen a és b (kiszámítva), hogy az egyenőség fennálljon? 3 piros pont

frz

"Allez, nous pouvons toujours entendre un ou deux " nombre magiques", a déclaré Mike. "D'accord!"

 694 1 généralement 694 2

Eh bien, l'égalité de la fraction mixte et du produit ne s'applique pas toujours, remplacer simplement les chiffres quatre dans l'exemple par deux chiffres sept.
Si un nombre naturel a (a> 0) est choisi, comment doit-on choisir b pour que l'équation générale soit correcte ? 3 points bleus.
Du monde des logarithmes. Le logarithme népérien est ln ((81/8) - 9) = ln (81/8) - ln 9
Généralement : ln ((a / b) - c) = ln (a / b) - ln c. Ce n'est pas toujours vrai, mais si je spécifie c>1, comment a et b devraient-ils être sélectionnés (calculés) pour que l'équation soit correcte ? 3 points rouges.

esp

"Vamos, todavía podemos soportar un "hechizo de número" o dos", dijo Mike. "¡Está bien!"
694 1 general 694 2

Pues bien, la igualdad de la fracción mixta y el producto no siempre se aplica, así que basta con sustituir los 4 del ejemplo por dos 7.
Si se elige un número natural a (a>0), ¿cómo se debe elegir b para que la ecuación general sea correcta? 3 puntos azules.
Del mundo de los logaritmos.
Para el logaritmo natural, ln((81/8) - 9))= ln (81/8) - ln 9
En general: ln (a/b) - c) = ln (a/b) - ln c.
Sin embargo, esto no siempre es cierto, pero si especifico c > 1, ¿cómo habría que elegir (calcular) a y b para que la ecuación sea correcta? 3 puntos rojos.

en

“Come on one or two more so called 'number tricks' will be alright”, Mike. said “Okay!”

694

Well, we always do have the equality of mixed fractions and not the product, therefore you substitute the fours through 2 sevens in the example.
If a whole number a (a>0) gets chosen, how has b to be chosen, so that the general equation is true? 3 blue points.
From the world of logarithms. For the whole logarithm ln((81/8) - 9) = ln (81/8) – ln 9 is true.
In general: ln((a/b) - c) = ln (a/b) – ln c. This is not true, if I prescribe c > 1, how have a and b then to be chosen (calculated), that the equation is true? 3 red points.

it

„Dai, qualche aspetto magico rispetto numeri dovremmo ancora esaminare”, diceva Mike. „Va bene!”

 694 1 o in genere 694 2

Naturalmente non funziona sempre che la frazione mista sia uguale al prodotto. Per capirlo, basta cambiare nell’esempio le „4” con due „7”.
Se viene scelto un numero naturale a, come deve essere scelto b per ricevere un’equazione generale corretta? 3 punti blu
Parliamo adesso di logaritmi. Per il logaritmo naturale vale: ln((81/8) - 9) = ln(81/8) – ln(9)
In genere: ln((a/b) – c) = ln(a/b) – ln(c) però non in ogni caso. Se viene dato un c>1, come devono essere scelte (clcolate) a e b per un’equazione corretta? 3 punit rossi

Lösung/solution/soluzione/résultat/Решение:

Die blaue Aufgabe ist sehr einfach gewesen, die Lösung von rot "scheiterte" für viele halt daran, dass die notwendigen Gesetzmäßigkeiten fast nie im Unterricht vorkommen, schade eigentlich.
Musterlösung von Reinhold M., danke:
der Term a a/b, b ≠ 0, bei "blau" bedeutet ja
   a a/b = a + a/b = a * (b + 1)/b,
so dass die Bedingung genau für (Multiplikation mit b/a)
   b + 1 = a
erfüllt ist.
Es muss also b = a - 1 gewählt werden.
Im Beispiel gilt das ja tatsächlich: a = 5, b = 4 = 5 - 1 = a - 1.

Die rechte Seite der "roten" Bedingungsgleichung (b ≠ 0) kann man ja zu
   ln(a/b) - ln(c) = ln((a/b) / c)
umformen, so dass die Bedingung genau für
   a/b - c = (a/b) / c
erfüllt ist, was wiederum genau für (Addition von c - (a/b) / c)
   a/b * (1 - 1/c) = c
gilt - und das genau für (Multiplikation von c / (c - 1))
   a/b = c^2 / (c - 1).
Es muss also a/b = c^2 / (c - 1) gelten. Beispielsweise können b ≠ 0
frei und dann a = b * c^2 / (c - 1) gewählt werden.
Sollen alles natürliche Zahlen sein, so gibt es wegen der
Teilerfremdheit von c^2 und c - 1 eine ganze Zahl n, n > 0, so dass
   a = c^2 n,
   b = (c - 1) n.
Sollen zusätzlich a und b teilerfremd sein, so folgt n = 1, also a =
c^2, b = c - 1.
Im Beispiel gilt das ja tatsächlich: c = 9, a = c^2 = 81, b = c - 1 = 8.


Aufgabe 11

695. Wertungsaufgabe

deu

„Einen ziemlich großen Kreis hast du gezeichnet.“, sagte Bernd zu seiner Schwester. „Das finde ich nicht, der Radius beträgt 6 cm.

695

Ich habe noch ein gleichschenkliges Trapez eingezeichnet. Die zueinander parallelen Seiten des Trapezes sind 10 cm bzw. 6 cm lang.“
Wie groß sind Umfang und Flächeninhalt des Trapezes? - 4 rote Punkte.
Wie groß sind Umfang und Flächeninhalt eines größtmöglichen gleichseitigen Dreiecks, welches in diesen Kreis passt.? - 4 blaue Punkte.

Termin der Abgabe 09.12.2021. Срок сдачи 09.12.2021. Ultimo termine di scadenza per l´invio è il 09.12.1921. Deadline for solution is the 9th. December 2021. Date limite pour la solution 09.12.2021. Soluciones hasta el 09.12.2021. Beadási határidő 2021.12.09. 截止日期: 2021.12.09 – 请用徳语或英语回答

chin

第695题
“你画了一个相当大的圆啊!”伯恩德对他妹妹说。

695


“我不觉得,这个圆的半径是 6 厘米。 我还画了一个等腰梯形。 梯形的两个平行边的边长分别是10厘米和6厘米。”

那么梯形的周长和面积是多大? - 4个红点。
在这个圆内的最大的等边三角形的周长和面积是多少? - 4个蓝点。

截止日期: 2021.12.09 – 请用徳语或英语回答

russ

«Ты нарисовала довольно большой круг», сказал Бернд своей сестре. «Не думаю, радиус всего 6 см.

695

Я также нарисовала равнобочную трапецию. Длина параллельных сторон трапеции – 10 см и 6 см ".
Насколько велики периметр и площадь трапеции? - 4 красных очка.
Насколько велики периметр и площадь максимально возможного равностороннего треугольника, который вписывается в этот круг? - 4 синих очка.

hun

„Jó nagy kört szerkesztettél.” – mondta Bernd a húgának. „Nem is, a sugara 6 cm.

695

Bele rajzoltam egy egyenlő szárú trapézt. A párhuzamos oldalak 1ö és 6 cm hosszúak.”
Mekkora a kerülete és a területe a trapéznak. – 4 piros pont
Mekkora a kerülete és felülete a lehető legnagyobb egyenlő oldalú háromszögnek, ami a körbe belefér? – 4 kék pont

frz

« T'as tracé un assez grand cercle », dit Bernd à sa sœur. « Je ne pense pas, le rayon est de 6 cm.

695

J'ai dessiné un trapèze isocèle. Les côtés parallèles du trapèze mesurent 10 cm et 6 cm de long."
Quelle est la circonférence et la surface du trapèze ? - 4 points rouges.
Quelle est la circonférence et la surface du plus grand triangle équilatéral possible rentrant dans ce cercle ? - 4 points bleus.

esp

"Has dibujado un círculo muy grande", dijo Bernd a su hermana. "No lo creo, el radio es de 6 cm.

695

También dibujé un trapecio isósceles. Los lados del trapecio que son paralelos entre sí miden 10 cm y 6 cm respectivamente." ¿Cuáles son el perímetro y el área del trapecio? - 4 puntos rojos.
¿Cuál es el perímetro y el área del mayor triángulo equilátero posible que cabe dentro de este círculo? - 4 puntos azules.

en

“You've drawn quite big circle.”, Bernd told his sister “I can't agree with you on that, the radius is 6 cm.

695

I've also drawn an isosceles trapezium inside. The parallel sides of the trapezium facing each other are 10 cm resp. 6 cm long.”
How big are perimeter and area of the trapezium? - 4 red points.
How big are perimeter and area of the biggest possible equilateral triangle, fitting inside the circle.? - 4 blue points.

it

„Hai disegnato un cerchio abbastanza grande.”, Bernd diceva a sua sorella. „Non mi sembra; il raggio è 6 cm.

695

Poi ho disegnato un trapezio isosceles. I lati paralleli hanno una lunghezza di 10 e 6 cm.”
Quale sono l’area e la circonferenza del trapezio? 4 punti rossi
Quale sono l’area e la circonferenza del triangolo equilatero più grande possible che entra in questo cerchio? 4 punti blu

Lösung/solution/soluzione/résultat/Решение:

Agesehen davon, dass die Farben (blau und rot) verwechselt wurden, war die Lösung recht einfach zu finden.
Musterlösung von Hans, danke. --> pdf <--


Aufgabe 12

696. Wertungsaufgabe

deu

696 Dürerbuchstabe G

696 g

„Schaut, ich habe den Buchstaben G konstruiert. Damit sind alle Buchstaben für das deutsche Wort W O C H E N A U F G A B E vorhanden“, sagte Lisa ganz stolz. (Aufgaben 600, 612, 624, 636, 648, 660, 672, 684 und 696)
Die Basis der Konstruktion ist das Quadrat ABCD mit der Seitenlänge a. (Für die Aufgabe wurde a = 10 cm gewählt.) Wie der Buchstabe konstruiert wird, lässt sich dem zweiten Bild entnehmen.

696

Die großen Kreise (Mittelpunkte M1 und M2) haben den Radius a/2. Die mittelgroßen Kreise haben den Radius a/10 und für die kleinsten Kreise gilt r =a/30.
Wie groß sind Flächeninhalt und Umfang des Kreisabschnitts, der rechts über das Quadrat ABCD hinausragt? - 6 blaue Punkte.
Wie groß sind Umfang und Flächeninhalt der roten Teilfigur RTFU? 8 rote Punkte.

Termin der Abgabe 16.12.2021. Срок сдачи 16.12.2021. Ultimo termine di scadenza per l´invio è il 16.12.1921. Deadline for solution is the 16th. December 2021. Date limite pour la solution 16.12.2021. Soluciones hasta el 16.12.2021. Beadási határidő 2021.12.16. 截止日期: 2021.12.16 – 请用徳语或英语回答

chin

第696题 丢勒字母 G

“看,我构建了字母 G。 这样德语单词 W O C H E N A U F G A B E 中的所有字母都有了。” 丽莎非常自豪地说。
(参考练习题 600、612、624、636、648、660、672、684 和 696)

696 g


构图的基础是边长为a的正方形ABCD,(这道题可以选a=10厘米)。这个字母是怎么构建的,可以参考第二张图。

圆心分别是M1和M2的大圆的半径为a/2; 中等圆的半径是a/10; 最小圆的半径是a/30。

696

请问:超出正方形ABCD右边的弧形部分的面积和周长是多少? 6个蓝点
红色部分RTFU的周长和面积是多少?8个红点

截止日期: 2021.12.16 – 请用徳语或英语回答

rus

Буква Дюрера G

«Смотрите, я построила букву G. Это означает, что все буквы немецкого слова W O C H E N A U F G A B E присутствуют, гордо сказала Лиза. (Задачи 600, 612, 624, 636, 648, 660, 672, 684 и 696)

696 g

Основа конструкции - квадрат ABCD с длиной стороны a. (Для задачи было выбрано а = 10 см.) Как построена буква, можно увидеть на втором рисунке.

696

Большие круги (центры M1 и M2) имеют радиус a/2. Круги среднего размера имеют радиус a/10, а самые маленькие круги имеют радиус r = a/30.
Каковы площадь и периметр сегмента круга, который выступает на правой стороне за квадрат ABCD? - 6 синих очков.
Каковы периметр и площадь красной части рисунка RTFU? 8 красных очков.

hun

Dürer betű „G”

„Nézd, megszerkesztettem a G betűt. Ezzel a német szónak, a WOCHENAUFGABE-nak minden betűje megvan.” mondta büszkén Lisa. (600, 612, 624, 636, 648, 660, 672, 684 és 696-os feladat)

696 g

A szerkesztés alapja az a élhosszúságú ABCD négyszög. (A feladatban a = 10 cm.) A további szerkesztés a második képen követhető.

696

A nagy körök (középpontja M1 és M2) sugara a/2. A közepes köröké a/10, a legkisebbeké a/30.
Mekkora a felülete és kerülete a körszeletnek, ami jobbra az ABCD négyszögből kilóg? – 6 kék pont
Mekkora a felülete és kerülete a piros RTFU részletnek? – 8 piros pont

frz

Lettre G Dürer

 « Regardez, j'ai construit la lettre G. Cela signifie que toutes les lettres du mot allemand W O C H E N A U F G A B E sont là », a déclaré fièrement Lisa. (Exercices 600, 612, 624, 636, 648, 660, 672, 684 et 696)

696 g

La base de la construction est le carré ABCD avec la longueur d'arête a. (A = 10 cm a été choisi pour cette exercice.) La façon dont la lettre est construite peut être vue dans la deuxième image.

696

Les grands cercles (centres M1 et M2) ont le rayon a/2. Les cercles de taille moyenne ont le rayon a/10 et les plus petits cercles ont r =  a/30.
Quelle est la superficie et le périmètre du segment de cercle qui dépasse vers la droite au-delà du carré ABCD ? - 6 points bleus.
Quelle est la taille de la circonférence et de l'aire de la partie rouge de la figure RTFU ? 8 points rouges.

esp

Letra G de Durero

"Mira, he construido la letra G. Así que todas las letras de la palabra alemana W O C H E N A U F G A B E están ahí", dijo Lisa con bastante orgullo. (Tareas 600, 612, 624, 636, 648, 660, 672, 684 y 696)

696 g

La base de la construcción es el cuadrado ABCD con la longitud de arista a. (Para la tarea, se eligió a = 10 cm.) En la segunda imagen se puede ver cómo se construye la letra.

696

Los círculos grandes (centros M1 y M2) tienen el radio a/2. Los círculos medianos tienen el radio a/10 y para los círculos más pequeños es válido r =a/30.
¿Cuál es el área y la circunferencia de la sección del círculo que se extiende más allá del cuadrado ABCD a la derecha? - 6 puntos azules.
¿Cuál es la circunferencia y el área de la figura parcial roja RTFU? 8 puntos rojos.

en

Dürer letter G

„Look, I've constructed the letter G. So every letter for the German word W O C H E N A U F G A B E is given“, Lisa said proudly. (tasks 600, 612, 624, 636, 648, 660, 672, 684 and 696)

696 g

The construction base is square ABCD with the edge length a. (For the task we chose a = 10 cm.) How to construct the letter, you can see in the second picture.

696

The big circles (centre M1 and M2) do have the radius a/2. The medium-sized circles do have the radius a/10 and for the smallest circle is given r =a/30.
How big are area and perimeter of the circle part, that is on the right side above the square ABCD? - 6 blue points.
How big are perimeter and area of the red part figure RTFU? 8 red points.

it

„Guardate, ho costruito la lettera G. Con questo adesso abbiamo complettato la parola tedesca „WOCHENAUFGABE”, Lisa diceva tutta orgogliosa. (Compiti 600, 612, 624, 636, 648, 660, 672, 684 e 696)

696 g

Si inizia con un quadrato con la lunghezza dei lati a (Qui abbiamo scelto a = 10 cm). Nel secondo disegno si vede come viene costruito tutta la lettera.

696

I cerchi grandi (Centri M1 e M2) hanno un raggio di a/2. Quelli medi un raggio di a/10 ed i più piccoli r = a/30.
Quale sono l’area e la circonferenza della parte del cerchio che sta fuori del quadrato ABCD? – 6 punti blu
Quale sono l’area e la circonferenza della parte rossa RTFU? – 8 punti rossi

Lösung/solution/soluzione/résultat/Решение:

 Musterlösung von Karlludwig, danke --> pdf <--


Auswertung Serie 58

 Herzliche Glückwünsche zum Gewinn des Buchpreises, der geht an: Marit Grießer, Gitta und Karlludwig.

Auswertung Serie 58 (blaue Liste)

Platz Name Ort Summe Aufgabe
  685 686 687 688 689 690 691 692 693 694 695 696
1. Birgit Grimmeisen Lahntal 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Hans Amstetten 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Ingmar Rubin Berlin 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Paulchen Hunter Heidelberg 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Calvin Crafty Wallenhorst 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Albert A. Plauen 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Reinhold M. Leipzig 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Maximilian Jena 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Karlludwig Cottbus 48 6 4 2 3 5 5 4 3 3 3 4 6
1. Magdalene Chemnitz 48 6 4 2 3 5 5 4 3 3 3 4 6
2. HeLoh Berlin 47 6 4 2 3 5 5 3 3 3 3 4 6
2. Axel Kästner Chemnitz 47 6 4 2 3 5 5 4 3 2 3 4 6
2. Marit Grießer Sessenhausen 47 6 4 2 3 5 5 4 3 3 3 3 6
2. Alexander Wolf Aachen 47 6 4 2 3 4 5 4 3 3 3 4 6
3. Dana Ingolstadt 46 6 4 2 3 5 5 4 3 3 3 4 4
4. Hirvi Bremerhaven 45 6 4 2 3 5 5 4 3 - 3 4 6
5. Kurt Schmidt Berlin 44 5 4 2 3 5 5 4 3 - 3 4 6
6. Gerhard Palme Schwabmünchen 42 - 4 2 3 5 5 4 3 3 3 4 6
7. Frank R. Leipzig 41 - 4 2 2 5 5 4 3 3 3 4 6
8. Othmar Z. Weimar (Lahn) 39 6 4 2 3 5 5 4 3 - 3 4 -
9. Gitta Großsteinberg 38 6 4 - 3 3 5 4 3 3 3 4 -
10. Siegfried Herrmann Greiz 30 - 4 - - 4 5 4 3 3 3 4 -
11. Günter S. Hennef 28 - 4 2 - - 5 4 3 3 3 4 -
12. HIMMELFRAU Taunusstein 27 - - - - - 5 4 3 3 3 3 6
12. W. Gliwa Magdeburg 27 - 4 - 3 5 5 - 3 - 3 4 -
13. Helmut Schneider Su-Ro 23 - 4 2 3 - 5 - 3 3 3 - -
14. Laura Jane Abai Chemnitz 20 6 4 2 - - - 4 3 - 1 - -
14. Janet A. Chemnitz 20 6 4 2 - - - 4 3 - 1 - -
14. Linnea Böhm Chemnitz 20 6 - 2 - - - 4 - 1 3 4 -
15. Sophie Pöschel Chemnitz 16 - - 2 - 3 - - - - 3 4 -
15. Frank Römer Frankenberg 16 - - - - - 2 4 3 - 3 4 -
15. Luise Schlenkrich Chemnitz 16 - - - - 3 - 3 - - - 4 6
15. Henry Hasenknopf Chemnitz 16 6 - 2 - - - - - - - 4 4
16. Emily Seidel Chemnitz 14 - - 2 - 5 - - - - 3 4 -
17. Ronja Schobner Chemnitz 12 - 4 2 - - - - - - 3 3 -
17. Josefine Bohley Chemnitz 12 - - 2 3 - - - 3 - - 4 -
18. Lilly Barz Chemnitz 9 - - 2 - - - - - - 3 4 -
18. Ole Hering Chemnitz 9 - - 2 - - - - - - 3 4 -
18. Rufus Windrich Chemnitz 9 - - 2 - - 5 - - - 2 - -
18. Dominique Böttinger Chemnitz 9 - - 2 3 - - - - 2 2 - -
18. Volker Bertram Wefensleben 9 - 4 - - - 5 - - - - - -
19. Tommy Oeser Chemnitz 8 - - 2 - - - 4 - - 2 - -
19. Karoline Stingl Chemnitz 8 6 - 2 - - - - - - - - -
20. Mikko Winkler Chemnitz 7 - 2 - 3 - - - - 2 - - -
21. Felix Helmert Chemnitz 6 6 - - - - - - - - - - -
21. Ina Jahre Zwickau 6 6 - - - - - - - - - - -
21. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
21. Liuba Bässler Chemnitz 6 - - 2 - - - 4 - - - - -
21. Nico Plümer Chemnitz 6 6 - - - - - - - - - - -
22. Nagy-Balo Andras Budapest 5 - - - - 3 - - - - 2 - -
22. Florine Lorenz Chemnitz 5 5 - - - - - - - - - - -
22. Alexander Haupt Chemnitz 5 - - - - - - - - 3 2 - -
22. Maximilian Dotzauer Chemnitz 5 - - 2 3 - - - - - - - -
22. Ralf Kleinschmidt Frankfurt/Main 5 - - 2 - - - - - - 3 - -
23. Bernd Berlin 4 - 4 - - - - - - - - - -
23. Miriam Müller Chemnitz 4 - - - - - - - - - - 4 -
23. Amina Arndt Bad Kreuznach 4 - - - - - - - - - - 4 -
23. Luna Synnatzschke Chemnitz 4 - - - - - - - - - - 4 -
23. Sophie-Marie Scherzer Chemnitz 4 - - 2 2 - - - - - - - -
23. Maximilian Dotzauer Chemnitz 4 - - - - - - - - - - 4 -
23. Hernri Lorenz Chemnitz 4 - - 2 - - - - - - 2 - -
24. Frida Schwarzenberg Chemnitz 3 - - - - - - - 3 - - - -
24. Valentin Dotzauer Chemnitz 3 - - - 3 - - - - - - - -
24. Marie Reichelt Chemnitz 3 - - - - - - - - - 3 - -
24. Kim Amy Bunge Chemnitz 3 - - - - - - - - - - 3 -
24. Phileas Steinbach Chemnitz 3 - - - - - - - - - 3 - -
24. Louis R. Küchler Chemnitz 3 - - - - - - - - - 3 - -
24. Nora Frotscher Chemnitz 3 - - - - - - - 3 - - - -
24. Jule König Chemnitz 3 - - - - - - - - 3 - - -
24. Nele Suri Frank Chemnitz 3 - - - - - - - - 3 - - -
24. Finnja Rupsch Chemnitz 3 - - - 3 - - - - - - - -
24. Luise Steinbach Chemnitz 3 - - - - - - - 3 - - - -
25. Carolina Liebernickel Chemnitz 2 - - - - - - - - - 2 - -
25. Valentin Dotzauer Chemnitz 2 - - 2 - - - - - - - - -
25. Kara Wagner Chemnitz 2 - - - - - - - - - 2 - -

 

Auswertung Serie 58 (rote Liste)

Platz Name Ort Summe Aufgabe
  685 686 687 688 689 690 691 692 693 694 695 696
1. Reinhold M. Leipzig 58 6 4 2 4 5 9 7 3 3 3 4 8
1. Karlludwig Cottbus 58 6 4 2 4 5 9 7 3 3 3 4 8
1. Magdalene Chemnitz 58 6 4 2 4 5 9 7 3 3 3 4 8
1. Maximilian Jena 58 6 4 2 4 5 9 7 3 3 3 4 8
1. Hans Amstetten 58 6 4 2 4 5 9 7 3 3 3 4 8
1. Calvin Crafty Wallenhorst 58 6 4 2 4 5 9 7 3 3 3 4 8
1. Paulchen Hunter Heidelberg 58 6 4 2 4 5 9 7 3 3 3 4 8
2. Birgit Grimmeisen Lahntal 57 6 4 2 4 5 9 7 3 3 3 4 7
2. Ingmar Rubin Berlin 57 6 4 2 4 5 9 7 3 3 3 4 7
2. Alexander Wolf Aachen 57 6 4 2 4 4 9 7 3 3 3 4 8
3. Albert A. Plauen 56 6 4 2 4 4 9 6 3 3 3 4 8
3. Marit Grießer Sessenhausen 56 6 4 2 4 5 9 7 3 3 3 4 6
4. HeLoh Berlin 55 6 4 2 4 5 9 5 3 3 3 4 7
4. Hirvi Bremerhaven 55 6 4 2 4 5 9 7 3 - 3 4 8
5. Gerhard Palme Schwabmünchen 52 - 4 2 4 5 9 7 3 3 3 4 8
5. Dana Ingolstadt 52 6 4 2 4 5 6 5 3 2 3 4 8
6. Frank R. Leipzig 51 - 4 2 3 5 9 7 3 3 3 4 8
6. Axel Kästner Chemnitz 51 6 4 1 4 4 9 7 3 1 - 4 8
7. Kurt Schmidt Berlin 48 5 4 1 4 5 6 7 3 - 1 4 8
8. Gitta Großsteinberg 47 6 4 - 4 4 9 7 3 3 3 4 -
9. Othmar Z. Weimar (Lahn) 42 6 4 2 4 5 7 7 3 - 3 1 -
10. HIMMELFRAU Taunusstein 37 - - - - - 9 7 3 3 3 4 8
11. Günter S. Hennef 35 - 4 2 - - 9 7 3 3 3 4 -
12. Siegfried Herrmann Greiz 28 - 4 - - - 9 3 3 2 3 4 -
13. Helmut Schneider Su-Ro 26 - 4 2 4 - 7 - 3 3 3 - -
14. W. Gliwa Magdeburg 25 - 4 - 1 5 5 - 3 - 3 4 -
15. Volker Bertram Wefensleben 20 - 4 - - - 9 7 - - - - -
16. Janet A. Chemnitz 14 6 - 2 - - - 3 3 - - - -
16. Laura Jane Abai Chemnitz 14 6 - 2 - - - 3 3 - - - -
17. Rufus Windrich Chemnitz 13 - - 1 - - 9 - - - - 3 -
18. Henry Hasenknopf Chemnitz 10 5 - 1 - - - - - - - - 4
19. Linnea Böhm Chemnitz 9 5 - 1 - - - 3 - - - - -
20. Karoline Stingl Chemnitz 7 6 - 1 - - - - - - - - -
20. Liuba Bässler Chemnitz 7 - - 1 - - - 3 - - - 3 -
21. Frank Römer Frankenberg 6 - - - - - - 3 - - - 3 -
21. Felix Helmert Chemnitz 6 6 - - - - - - - - - - -
21. Ina Jahre Zwickau 6 6 - - - - - - - - - - -
21. Florine Lorenz Chemnitz 6 6 - - - - - - - - - - -
21. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
21. Tommy Oeser Chemnitz 6 - - 1 - - - 3 - - - 2 -
21. Nico Plümer Chemnitz 6 6 - - - - - - - - - - -
21. Ronja Schobner Chemnitz 6 - 2 1 - - - - - - - 3 -
22. Dominique Böttinger Chemnitz 5 - - 1 - - - - - - - 4 -
23. Nagy-Balo Andras Budapest 4 - - - - 3 - - - - 1 - -
23. Amina Arndt Bad Kreuznach 4 - - - - - - - - - - 4 -
23. Bernd Berlin 4 - 4 - - - - - - - - - -
24. Mikko Winkler Chemnitz 3 - - - - - - - - - - 3 -
24. Ralf Kleinschmidt Frankfurt/Main 3 - - - - - - - - - 3 - -
24. Kim Amy Bunge Chemnitz 3 - - - - - - - - - - 3 -
25. Nele Suri Frank Chemnitz 2 - - - - - - - - 2 - - -
26. Valentin Dotzauer Chemnitz 1 - - 1 - - - - - - - - -
26. Ole Hering Chemnitz 1 - - 1 - - - - - - - - -
26. Lilly Barz Chemnitz 1 - - 1 - - - - - - - - -
26. Hernri Lorenz Chemnitz 1 - - 1 - - - - - - - - -
26. Sophie Pöschel Chemnitz 1 - - 1 - - - - - - - - -

 

 

Serie 57

Serie 57

Hier werden die Aufgaben 673 bis 684 veröffentlicht.

Aufgabe 1

673. Wertungsaufgabe

Logikaufgabe

Start in die Serie 57

Als die Mutter von Maria und Bernd nach Hause kam, war sie ganz schön aufgeregt. „Was war denn los“? „Wir haben im Kaufhaus einen neuen Chef. Der hat alle Personalnummern und Abteilungsnummern neu vergeben. Ich muss mir die nun alle neu merken. Aber andererseits, mache ich für euch eine Logikaufgabe daraus.“, sagte die Mutter.
Ihre Kolleginnen heißen: Anne, Christiane, Esther, Rosa und Sybille. Die passenden Personalnummer sind 13, 15, 16, 18 und 19. Jede Kollegin arbeitet in einer anderen Abteilung (Damenbekleidung, Lebensmittel, Spielwaren, Sport und Herrenbekleidung). Die Nummern der Abteilungen sind 9, 14, 17, 23 und 26.

Wer (Name, Personalnummer) arbeitet in welcher Abteilung (Sortiment, Abteilungsnummer)? 6 blaue Punkte

Folgende Informationen gibt die Mutter:

  1. Sybille hat die Personalnummer 15
  2. Christiane arbeitet in der Abteilung 23.
  3. Die Frau mit der Personalnummer 19, das ist nicht Anne, arbeitet in einer Abteilung mit der Nummer 17, 23 oder 26.
  4. Rosa arbeitet in der Sportabteilung. Die Sportabteilung hat die Nummer 9, 17 oder 23.
  5. Die Frau mit der Personalnummer 13 arbeitet bei den Spielwaren. Die Abteilungsnummer dort ist nicht die 26.
  6. Die Lebensmittelabteilung hat die Nummer 9.
  7. In der Damenbekleidung – Nummer 14 – arbeitet nicht die Kollegin mit der Personalnummer 15.
  8. Die Frau mit der Personalnummer 16 arbeitet in der Abteilung mit der Nummer 17.

Name

Personalnummer

Abteilung

Abteilungsnummer

Anne

     

Christiane

     

Esther

     

Rosa

     

Sybille

     

„Weil du uns ein Logikrätsel gegeben hast, probiere ich das auch gleich noch.“, sagte Maria.

In der Schule befassten wir uns mit dem Leben und Werk berühmter Mathematiker (Apianus, Doppler, Huygens, Moivre und Stifel). Viel wussten wir zu Beginn des Projektes nicht, aber es dann doch sehr interessant. Zum Abschluss gestalteten wir noch in Kunstwerk. Jede von uns arbeitete in einem anderen Zimmer (Raum 1, Raum 8, Raum 15, Raum 22 oder eben Raum 29). Als Model hatten sich Gerhard, Luis, Matteo, Stefan und Ulf angeboten. Lustigerweise sind deren Familiennamen alles auch Berufsbezeichnungen (Kaufmann, Schmied, Lehrer, Jäger und Müller.)

Welcher Junge (Vorname/Familienname) stand in welchem Raum für welchen Mathematiker Modell? (6 rote Punkte)

  1. Im Zimmer 1 war der Junge mit dem Namen Kaufmann.
  2. Luis war das Modell für Huygens.
  3. Die Zimmernummer von Ulf war 7 Nummern größer als die Zimmernummer des Jungen mit dem Namen Müller, der für Apianus Modell stand.
  4. Entweder war der Junge mit dem Namen Schmied im Zimmer 8 und Gerhard war im Zimmer 22 oder es war genau umgekehrt.
  5. Im Zimmer 15 war Doppler zu bearbeiten, aber das machte nicht der Junge, der Jäger hieß.
  6. Im Zimmer 29 war Matteo. Er war nicht das Modell für Moivre.
  7. Stefan war nicht im Zimmer 22.

Zimmer

Mathematiker

Vorname

Familienname/Beruf

1

     

8

     

15

     

22

     

29

     

 

Vorlage zum Ankreuzen, pdf

Termin der Abgabe 06.05.2021. Срок сдачи 06.05.2021. Ultimo termine di scadenza per l´invio è il 06.05.1921. Deadline for solution is the 6th. May 2021. Date limite pour la solution 06.05.2021. Soluciones hasta el 06.05.2021. Beadási határidő 2021.05.06. 截止日期: 2021.05.06 - 请用徳语或英语回答。

chin

开始第57系列
第673题 逻辑题

当玛丽雅和贝德恩的妈妈回到家时,她非常兴奋。
"发生了什么事?"
"我们商场来了一位新老板,他重新分配了所有的人员编码和部门编码。我现在必须得记住所有这些。另外,我要给你们出一道逻辑题。" 他们的妈妈说道。

你们的同事分别是安妮(Anne),克里斯蒂安妮(Christiane),埃斯特(Esther),罗莎(Rosa)和西比乐(Sybille)。他们的个人编号有13, 15, 16, 18 和19。
每一个同事被分配在不同的部门工作,女装部、食品部、玩具部、体育用品部和男装部。这些部门的编号是9, 14, 17, 23 和26.
试编辑:谁(包括姓名和人员编号)在哪个部门(包括部门和部门编号)工作? 6个蓝点

妈妈提供的信息如下:

1。西比乐(Sybille)的个人编号是15。
2。克里斯蒂安妮(Christiane)在23号部门工作。
3. 个人编号19的工作人员,可以在17、23或者26号部门工作,但是安妮(Anne)除外。
4. 罗莎(Rosa)在体育用品部工作。体育用品部编号可以是9、17或23。
5. 个人编号13号的工作人员在玩具部工作,玩具部编号不能是26。
6. 食品部编号是9。
7. 女装部编号是14,但是个人编号15的工作人员不能在那儿工作。
8. 个人编号16的工作人员要在17号部门工作。

姓名 个人编号 部门 部门编码

同事的名字

个人编号

部门

部门编号

安妮Anne

     

克里斯蒂安妮Christiane

     

艾斯特Esther

     

罗莎Rosa

     

西比勒Sybille

     

"你给了我们一道逻辑题,那么我也想试着出一道类似的题。" 玛丽雅说。

在学校,我们研究著名的数学家阿皮亚努斯(Apianus)、多普勒(Doppler)、惠更斯(Huygens)、莫伊夫(Moivre)和斯蒂菲尔(Stifel)的生活和工作。
在这个项目开始时我们知道的并不多,但是后来却发现很有趣。最后我们还把它做成了艺术品。

我们每个人分别在不同的房间里工作,房间编号分别是1、8、15、22 和29。
格哈德(Gerhard),路易斯(Luis),马泰奥(Matteo),斯特凡(Stefan)和乌尔夫(Ulf)先给大家做了样板。
很有意思的是,他们的姓都代表一种职业,有:商人Kaufmann、铁匠Schmied、老师Lehrer、猎人Jäger、磨坊主Müller。
试分配: 哪个同学(名字/姓)在哪个房间当哪个数学家的模型? (6个红点)

  1. 1号房间是姓商人(Kaufmann)的同学的。
    2. 路易斯(Luis)是惠更斯(Huygens)的模型。
    3. 乌尔夫(Ulf)的房间号比代表数学家阿皮亚努斯(Apianus)姓磨坊主(Müller)的同学的房间号大7个数字。
    4. 姓铁匠Schmied的同学在8房间,格哈德(Gerhard)在22号房间,或者相反。
    5. 多普勒(Doppler)必须在15号房间里,但是不能由姓猎人Jäger的同学来完成。
    6. 马泰奥(Matteo)要在29号房间里,但他不能是莫伊夫(Moivre)的模型。
    7. 斯蒂菲尔(Stifel)不能在22号房间里。

房间编号 数学家 同学的名字 同学的姓

房间编号

数学家

同学的名字

同学的姓

1

     

8

     

15

     

22

     

29

     

截止日期: 2021.05.06 - 请用徳语或英语回答。

rus

673 Загадка логики

Когда мама Марии и Бернда вернулась домой, она была очень возбуждена. «Что случилось»? «У нас в универмаге новый шеф. Он изменил все номера персонала и отделов. Я теперь должна запомнить все эти новые номера. Но с другой стороны я из этого сделаю для вас новую задачу логики», сказала мама.
Её коллег зовут: Анне, Христиане, Эстер, Роза и Зибилле. Их номера персонала — 13, 15, 16, 18 и 19. Каждая коллега работает в другом отделе (женская одежда, продукты, игрушки, спорттовары и мужская одежда). Отделы имеют номера 9, 14, 17, 23 и 26.

Кто (имя, номер персонала) работает в каком отделе (ассортимент, номер отдела)?
(6 синих очков).

Следующие информации дала мама:

  1. Зибилле имеет номер персонала 15.
  2. Христиане работает в отделе 23.
  3. Женщина с номером персонала 19 — это не Анне — работает в отделе с номером 17, 23 или 26.
  4. Роза работает в отделе спорттоваров. Этот отдел имеет номер 9, 17 или 23.
  5. Женщина с номером персонала 13 работает в отделе игрушек. Номер этого отдела не 26.
  6. Отдел продуктов имеет номер 9.
  7. В отделе женской одежды — номер 14 — не работает коллега с номером персонала 15.
  8. Женщина с номером персонала 16 работает в отделе с номером 17.

Имя

Номер персонала

Отдел

Номер отдела

Анне

     

Христиане

     

Эстер

     

Роза

     

Зибилле

     

"Потому что ты нам задала загадку логики, я сейчас это тоже попробую», сказала Мария.

В школе мы занимались жизнью и творчеством знаменитых математиков (Апианус, Доплер, Гюйгенс, Муавр и Штифель). В начале проекта мы только мало знали о них, но потом стало очень интересно. В заключение мы создали некое произведение искусства. Каждый из нас работал в другом помещении (кабинет 1, кабинет 8, кабинет 15, кабинет 22 или кабинет 29). Герхард, Луис, Маттео, Стефан и Ульф предложили себя в качестве моделей. Как не смешно, фамилии у всех них являются названиями профессий (Купец, Кузнец, Учитель, Охотник и Мельник). Который мальчик (имя/фамилия) позировал в каком кабинете в качестве модели для какого математика? (6 красных очков).

  1. В кабинете 1 был мальчик с фамилией Купец
  2. Луис позировал моделью для Гюйгенса.
  3. Номер кабинета Ульфа был 7 номеров высше номера кабинета того мальчика с фамилией Мельник, который позировал моделью для Апиануса.
  4. В кабинете 8 был либо мальчик с фамилией Кузнец и Герхард находился в кабинете 22 или дело было совсем наоборот.
  5. В кабинете 15 нужно было изобразить Доплера, однако это не сделал мальчик с фамилией Охотник.
  6. В кабинете 29 был Маттео. Он не позировал моделью для Муавра.
  7. Стефан не был в кабинете 22.

Кабинет

Математик

Имя

Фамилия/Профессия

1

     

8

     

15

     

22

     

29

     

hun

Amikor Mária és Bernd anyukája hazaért, nagyon izgatott volt. „Mi történt?” „Új főnökünk van a boltban. Minden személyi számot és osztályszámot újra osztotta. Mindent újból meg kell jegyeznem. Másrészről lehetne belőle logikai feladatot készíteni.”- mondta anya.

A munkatársnőit Annának, Christianének, Esthernek, Rosának és Sybillenek hívják. A hozzájuk tartozó személyzeti számok a 13,15,16,18 és 19. Mindenki más részlegen dolgozik (női ruha, élelmiszer, játék, sort és férfiruha). Az osztályok számai: 9, 14,17,23 és 26.

Ki (név, személyzeti szám) melyik osztályon (részleg, szám) dolgozik? 6 kék pont

 Anya a következő adatokat adja meg:

  1. Sybille személyzeti száma a 15
  2. Christiane a 23-as részlegen dolgozik
  3. A 19-es személyzeti számú hölgy, aki nem Anne, a 9, 17 vagy 23-as osztály egyikén dolgozik
  4. Rosa a sportosztályon dolgozik. A sportosztály száma a 9, 17 vagy 23.
  5. A 13-as számú nő a játékosztályon dolgozik. Az osztály szűma nem a 26.
  6. Az élelmiszerosztály száma 9.
  7. A nőiruha osztályon, száma 14, nem a 26-os személyzeti számú nő dolgozik.
  8. A 16-os személyzeti számú hölgy a 17-es részlegen van.

„Mivel logikai feladatot adtál, kipróbálom én is azonnal” – mondta Mária. Az iskolában ismert matematikusok (Apianus, Doppler, Huygens, Moivre és Stifel) életével és művével foglalkoztunk. A projekt kezdetén nem tudtunk róluk sokat, de érdekesnek tűnt. Befejezésül készítettünk egy műalkotást. Mindenki közülünk másik szobában dolgozott (1,8,15,22 és 29-es szoba). Modellként Gerhard, Luis, Matteo, Stefan és Ulf jelentkezett. Vicces módon mindegyikük családi neve foglalkozáshoz kötődik (boltos, kovács, tanár, vadász és molnár).

Melyik fiú (családi és utónévvel) állt melyik szobában a matematikusoknak modellt?

(6 piros pont)

  1. Az 1-es szobában volt a Boltos vezetéknevű fiú.
  2. Luis volt Huygens modellje.
  3. Ulf szobája 7 számmal nagyobb volt, mint a molnár nevű fiúé, aki Apianus modellje volt.
  4. Vagy a Kovács nevű fiú volt a 8-as szobában és Gerhard a 22-es szobában, vagy fordítva.
  5. A 15-ös szobában Dopplert készítették, de nem a Vadász nevű fiú.
  6. A 29-es szoba Matteoé volt. Ő nem Moivre modellje.

Stefan nem a 22-es szobában volt.

frz

673 Casse tête logique

Quand la mère de Maria et Bernd est rentrée à la maison, elle était vraiment excitée. "Que-ce qui c'est passé"? «Nous avons un nouveau patron dans le grand magasin. Il a réaffecté tous les matricules et numéros de service. Je dois me souvenir de tous maintenant. Mais d'un autre côté, je vais en faire une exercice logique pour vous.
Ses collègues sont: Anne, Christiane, Esther, Rosa et Sybille. Les numéros matricules sont 13, 15, 16, 18 et 19. Chaque collègue travaille dans un service différent (vêtements pour femmes, épicerie, jouets, sports et vêtements pour hommes). Les numéros des services sont 9, 14, 17, 23 et 26.

Qui (nom, matricule) travaille dans quel service (gamme de produits, numéro de service)? 6 points bleus

La mère donne les informations suivantes:

  1. Sybille a le matricule 15
  2. Christiane travaille dans le service 23.
  3. La femme avec le numéro 19, qui n'est pas Anne, travaille dans un service avec le numéro 17, 23 ou 26.
  4. Rosa travaille dans le service des sports. Le service des sports a le numéro 9, 17 ou 23.
  5. La femme avec le matricule 13 travaille pour les jouets. Le numéro de service là-bas n'est pas le 26.
  6. Le rayon des aliments est le numéro 9.
  7. En vêtements pour femmes - le numéro 14 - la collègue avec le numéro matricule 15 ne travaille pas là-dedans.
  8. La femme avec le numéro 16 travaille dans le service avec le numéro 17.

Nom

Numéro matricule

Service

Numéro de service

Anne

     

Christiane

     

Esther

     

Rosa

     

Sybille

     

"Parce que tu nous as donné un casse-tête logique, je vais essayer aussi", a déclaré Maria.

À l'école, nous avons étudié la vie et l'œuvre de mathématiciens célèbres (Apianus, Doppler, Huygens, Moivre et Stifel). Nous ne savions pas grand-chose au début du projet, mais cela s'est avéré très intéressant. À la fin, nous avons conçu une œuvre d'art. Chacun de nous travaillait dans une pièce différente (salle 1, salle 8, salle 15, salle 22 ou salle 29). Gerhard, Luis, Matteo, Stefan et Ulf s'étaient proposés comme modèles. Curieusement, leurs noms de famille sont tous des titres d'emploi (Kaufmann, Schmied, Lehrer, Jäger et Müller.)

Quel garçon (prénom / nom) a été le modèle pour quel mathématicien dans quelle pièce? (6 points rouges)

  1. Le garçon nommé Kaufmann était dans la chambre 1.
  2. Luis était le modèle pour Huygens.
  3. Le numéro de chambre d'Ulf était 7 numéros plus grand que le numéro de chambre du garçon nommé Müller, qui était le modèle d'Apianus.
  4. Soit le garçon nommé Schmied était dans la chambre 8 et Gerhard était dans la chambre 22, soit c'était l'inverse.
  5. Doppler a dû être travaillé dans la salle 15, mais cela n'a pas été fait par le garçon appelé Jäger.
  6. Matteo était dans la chambre 29. Il n'était pas le modèle de Moivre.
  7. Stefan n'était pas dans la chambre 22.

Chambre

Mathématicien

Prénom

Nom/Emploi

1

     

8

     

15

     

22

     

29

     

esp

problema de lógica

Cuando la madre de María y Bernd llegó a casa, estaba muy emocionada. "¿Qué estaba pasando?" "Tenemos un nuevo jefe en los grandes almacenes. Asignó todos los números de personal y de departamento. Ahora tengo que recordarlos todos de nuevo. Pero, por otro lado, nos da la oportunidad de formar un problema de lógica", dijo la madre.

Sus colegas se llaman: Anne, Christiane, Esther, Rosa y Sybille. Los números de personal que coinciden son el 13, el 15, el 16, el 18 y el 19. Cada compañera trabaja en un departamento diferente (ropa de mujer, comestibles, juguetes, deportes y ropa de hombre). Los números del departamento son el 9, 14, 17, 23 y 26.

¿Quién (nombre, número de personal) trabaja en qué departamento (surtido, número de departamento)? 6 puntos azules

La madre da la siguiente información:

  1. Sybille tiene el número de personal 15
  2. Christiane trabaja en el departamento 23.
  3. La mujer con el número de personal 19, que no es Ana, trabaja en un departamento con el número 17, 23 o 26.
  4. Rosa trabaja en el departamento de deportes. El departamento de deportes es el número 9, 17 o 23. 
  5. La mujer con el número de personal 13 trabaja en el departamento de juguetes. El número del departamento no es el 26.
  6. El departamento de alimentación es el número 9.
  7. La compañera con el número de personal 15 no trabaja en el departamento de ropa de mujer (número 14).
  8. La mujer con el número de personal 16 trabaja en el departamento con el número 17.

nombre

número de personal

departamento

número de departamento

Anne

     

Christiane

     

Esther

     

Rosa

     

Sybille

     

"Ya que nos diste un acertijo de lógica, voy a intentar este otro también", dijo María.

En la escuela estudiamos las vidas y las obras de famosos matemáticos (Apianus, Doppler, Huygens, Moivre y Stifel). Al principio del proyecto no sabíamos mucho, pero luego fue muy interesante. Al final creamos una obra de arte. Cada uno de nosotros trabajó en una sala diferente (sala 1, sala 8, sala 15, sala 22 o sala 29). Gerhard, Luis, Matteo, Stefan y Ulf se ofrecieron como modelos. Curiosamente, sus apellidos son también títulos de trabajo (“Kaufmann” = comerciante, “Schmied” = herrero, “Lehrer” = maestro, “Jäger” = cazador y “Müller” = molinero).

¿Qué chico (nombre/apellido) hizo de modelo para qué matemático en qué sala? (6 puntos rojos)

  1. En la habitación 1 estaba el chico de apellido “Kaufmann”.
  2. Luis fue el modelo de Huygens.
  3. El número de habitación de Ulf era 7 números más grande que el número de habitación del chico de nombre “Müller”, que era el modelo de Apianus.
  4. O bien el chico de nombre “Schmied” estaba en la habitación 8 y Gerhard en la 22, o bien era al revés.
  5. En la sala 15 se trabajaba de Doppler, pero eso no lo hizo el chico llamado Jäger.
  6. En la habitación 29 estaba Matteo. No era el modelo de Moivre.
  7. Stefan no estaba en la habitación 22.

habitación

matemático

nombre

apellidos

1

     

8

     

15

     

22

     

29

     

en

673 logical riddle

When Maria's and Bernd's mother came home, she was really excited. “What happened”? “We've got a new boss at our department store. He renewed all staff and department numbers. I have to start learning them all over again. But on the other side I can make a new logical task for you.”, mother said.
Her colleagues are: Anne, Christiane, Esther, Rosa and Sybille. The fitting staff numbers are 13, 15, 16, 18 and 19. Every colleague works in a different department (women's clothing, food, toys, sport and men's clothing). The numbers of the departments are 9, 14, 17, 23 and 26.

Who (name, staff number) works in which department (assortment, department number)? 6 blue points

The following information we get from mother:

  1. Sybille has the staff number 15.
  2. Christiane works in department 23.
  3. The woman with staff number 19, isn't Anne, but works in a department with the number 17, 23 or 26.
  4. Rosa works in the sport department. The sport department has the number 9, 17 or 23.
  5. The woman with the staff number 13 works in the toy department. The department number there isn't 26.
  6. The food department has number 9.
  7. In the women's clothing department – number 14 – does not work the colleague with the staff number 15 .
  8. The woman with staff number 16 works in the department number 17.

name

staff number

department

department number

Anne

     

Christiane

     

Esther

     

Rosa

     

Sybille

     

“Because you gave to us a logical riddle, I will give you one in return.”, Maria said.

In school we are at the moment learning about the life and work of famous mathematicians (Apianus, Doppler, Huygens, Moivre and Stifel). We didn't know much about them at the start of the project, but then it became quite interesting. In the end we even created an art piece. Everyone of us worked in a different room (room 1, room 8, room 15, room 22 or room 29). As models volunteered Gerhard, Luis, Matteo, Stefan and Ulf. Funny thing was, that there last names were all job descriptions (Merchant, Smith, Teacher, Hunter and Miller.)

Which boy (first name/last name) modeled in which room for which mathematician? (6 red points)

  1. In room 1 was the boy with the name Merchant.
  2. Luis was a model for Huygens.
  3. The room number of Ulf was 7 numbers bigger than the room number of the boy with the name Miller, who was a model for Apianus.
  4. Either the boy with the name Smith was in room 8 and Gerhard was in room 22 or it was the other way round.
  5. In room 15 one person worked on Doppler, but the boy named Hunter didn't do it.
  6. In room 29 was Matteo. He was not the model for Moivre.
  7. Stefan was not in room 22.

room

mathematician

first name

last name/job

1

     

8

     

15

     

22

     

29

     

it

673 Enigma di logica

Quando la mamma di Maria e Bernd veniva a casa, era molto esagerata. „Cos’è successo?” - “All’emporio è arrivato un nuovo capo. Lui ha riorganizzato tutti i numeri sia del personale sia dei reparti ed io adesso li devo tutti memorizzare di nuovo. Ma dai! Allora ne faccio un compito di logica per voi”, diceva la mamma.

Le colleghe sue si chiamano Anne, Christiane, Esther, Rosa e Sybille. I numeri del personale di essi sono 13, 15, 16, 18 e 19. Ogni collega lavora in un’altro reparto (Abbigliamento da donna, prodotti alimentari, giocattoli, sport, abbigliamento da uomo). I numeri dei reparti sono 9, 14, 17, 23 e 26. Chi (Nome, numero del personale) lavora in quale reparto (nome, numero)?

6 punti blu.

Le informazioni che la mamma da sono i seguenti:

  1. Il numero del personale di Sybille è il 15.
  2. Christiane lavora nel reparto numero 23.
  3. La collega col numero del personale 19, che però non è Anne, lavora in un reparto col numero 17, 23 o 26.
  4. Rosa lavora nel reparto sport. Quel reparto ha il numero 9, 17 o 23.
  5. La collega col numero del personale 13 vende giocattoli. Questo reparto non ha il numero 26.
  6. Il numero del reparto per prodotti alimentari è il 9.
  7. Nel reparto “abbigliamento da donna” – numero 14 – non lavora la collega col numero del personale 15.
  8. La donna col numero del personale 16 lavora nel reparto numero 17.

Nome

Numero del personale

reparto

numero del reparto

Anne

     

Christiane

     

Esther

     

Rosa

     

Sybille

     

“Dato che tu ci hai fatto un compito di logica, ci provo anch’io.”, diceva Maria.

A scuola abbiamo lavorato sulla vita e le opere di matematici celebri (Apianus, Doppler, Huygens, Moivre e Stifel). All’inizio di questo progetto, non ne sapevamo tanto, ma poi era veramente interessante. E come compimento, abbiamo disegnato dei ritratti. Ognuna di noi lavorava in un’altra stanza (1, 8, 15, 22, 29). I modelli facevano Gerhard, Luis, Matteo, Stefan e Ulf. Stranamente I loro cognomi provengono tutti quanti da professioni (Kaufmann [mercante], Schmied [fabbro], Lehrer [insegnante], Jäger [cacciatore] e Müller [mugnaio]).

Quale ragazzo (nome e cognome) posava in quale stanza per quale matematico? (6 punti rossi)

  1. Nella stanza 1 posava il ragazzo col cognome Kaufmann.
  2. Luis faceva il modello per Huygens.
  3. Il numero della stanza di Ulf era 7 numeri più alto di quello del ragazzo col cognome Müller che posava per Apianus.
  4. Forse il ragazzo col cognome Schmied stava nella stanza 8 e Gerhard si trovava nella stanza 22 o la situazione era proprio al contrario.
  5. Nella stanza 15 un ragazzo posava per Doppler; questo ragazzo non si chiamava Jäger.
  6. Nella stanza 29 c’era Matteo. Non facava il modello per Moivre.
  7. Stefan non era nella stanza 22.

Stanza

Matematico

Nome

Cognome/Professione

1

     

8

     

15

     

22

     

29

     

 Termin der Abgabe 06.05.2021. Срок сдачи 06.05.2021. Ultimo termine di scadenza per l´invio è il 06.05.1921. Deadline for solution is the 6th. May 2021. Date limite pour la solution 06.05.2021. Soluciones hasta el 06.05.2021. Beadási határidő 2021.05.06. 截止日期: 2021.05.06 - 请用徳语或英语回答。

Lösung/solution/soluzione/résultat/Решение:

 Verschiedene Wege zur Lösung boten sich, viele haben mit der Vorlage gearbeitet, andere haben mit Programmen hantiert. Nur wenige eingesandte Lösungen hatten kleine Fehler, viielleicht auch nur beim Abschreiben enstanden.
Es gibt jedenfalls nur eine Lösung, die alle Bedingungen erfüllt:
blau

Name

Personalnummer

Abteilung

Abteilungsnummer

Anne

 18 Damenbekleidung 14

Christiane

13 Spielwaren 23

Esther

19 Herrenbekeidung 26

Rosa

16 Sport 17

Sybille

 15 Lebensmittel 9

++

rot

Zimmer

Mathematiker

Vorname

Familienname/Beruf

1

Moivre Stefan Kaufmann

8

Apianus Gerhard Müller

15

Doppler Ulf Lehrer

22

Huygens Luis Schmied

29

Stifel Matteo Jäger

++


Aufgabe 2

674. Wertungsaufgabe

deu

674

„Vor vielen Jahren war ich in Ägypten und habe dort auch die Cheopspyramide gesehen. Die ist wirklich beeindruckend. Aus dem Sand erhebt sich die quadratische Pyramide (Grundkante AB rund 230,36 m und Höhe MS rund 146,59 m.)“, erzählte der Opa von Bernd und Maria.
„Auf einem Schild neben der Pyramide war ein blaues rechtwinkliges Dreieck (EMS) zu erkennen. Die Strecke e war mit 11 und die Strecke h mit 14 angegeben. Dann war da noch eine 2 zu lesen und zum Schluss war noch ein Symbol für die Zahl Pi zu erkennen.“
Wenn e =11 kE (königliche Ellen, Maß im alten Ägypten) und h = 14 kE gewählt wird, dann sind die Seiten des blauen Dreiecks 20mal kleiner als die entsprechenden Seiten des blauen Dreiecks der eigentlichen Pyramide. Wie lang war also eine königliche Elle? 3 blaue Punkte.
Wie kommt man mit den Zahlen 11, 14 und 2 auf eine Näherung der Zahl Pi? Das blaue Dreieck führt durch eine einfache Konstruktion zu einem „goldenen Rechteck“ (wieder gute Näherung). Wie sähe eine solche Konstruktion aus? (2+2 rote Punkte)

Termin der Abgabe 13.05.2021. Срок сдачи 13.05.2021. Ultimo termine di scadenza per l´invio è il 13.05.1921. Deadline for solution is the 13th. May 2021. Date limite pour la solution 13.05.2021. Soluciones hasta el 13.05.2021. Beadási határidő 2021.05.13. 截止日期: 2021.05.13 - 请用徳语或英语回答。

chin

第674题

674

"很多年前我在埃及,在那儿我见到了胡夫金字塔。它真是令人印象深刻。矗立在沙漠中的方形金字塔的底部边长AB约230,36米,高度MS约为146,59米。" 贝恩德和玛丽雅的爷爷讲述道。

„在金字塔旁边的一个牌子上可以看到一个蓝色的直角三角形(EMS)。已知e的长度是11, h的长度是14。 然后还有一个数字2,最后还有一个表示数字π的符号。"

如果取 e=11 KE (königliche Ellen,古埃及的测量单位), h = 14 kE, 那么蓝色三角形比实际金字塔小20倍。
求 1 KE 是多长? 3 个蓝点

数字11、14和2怎么组合才能得到π的近似值?

通过一个简单的构图把蓝色的三角形构建成„金色的矩形“ (也是近似)
那么一个这样的结构看起来是什么样子的呢? (2 + 2红点)

截止日期: 2021.05.13

rus

674

«Много лет назад я был в Египте и увидел там пирамиду Хеопса. Это действительно впечатляет. Квадратная пирамида поднимается из песка (основное ребро AB около 230,36 м и высота MS около 146,59 м.)», рассказал дед Бернда и Марии. «На вывеске рядом с пирамидой был виден синий прямоугольный треугольник (EMS). Отрезок e был задан как 11, а отрезок h как 14. Затем там ещё была двойка, а в конце можно было увидеть символ числа Пи». Если е = 11 кЭ (царские локти, мера в Древнем Египте) и h = 14 кЭ, то стороны синего треугольника в 20 раз меньше соответствующих сторон синего треугольника реальной пирамиды. Так, какой длины был царский локоть? (3 синих очка). Как получить приближение числа Пи с числами 11, 14 и 2? Синий треугольник через простую конструкцию ведет к «золотому прямоугольнику» (опять же хорошее приближение). Как выглядит такая конструкция? (2 + 2 красных очка)

hun

674

„Pár évvel ezelőtt voltam Egyiptomban és láttam a Cheopsz-piramist. Tényleg lenyűgöző. Kiemelkedik a homokból a négyszögletes piramis (AB alapél 230,36 m MS magasság 146,59 m).” – mesélte Bernd és Mária nagypapája.
„A piramis melletti táblán egy kék jobbszögű háromszöget (EMS) lehetett látni. Az e szakasz 11, a h szakasz 14. Aztán felismerhető még egy 2-es és végül a pi szám szimbóluma.”
Ha e =11 kE (királyi egység, az ókori Egyiptom mértékegysége) és h = 14 kE, akkor a kék háromszög hússzor kisebb, mint a tulajdonképpeni piramis. Milyen hosszú volt tehát egy királyi rőf? 3 kék pont
Hogy kerül a 11, 14 és 2 a pi szám közelébe? A kék háromszögből egy egyszerű szerkesztéssel arany jobbszöget lehet készíteni (ismét jó megközelítéssel). Hogy néz ki a szerkesztés? 2+2 piros pont

frz

674

"Il y a de nombreuses années, j'étais en Égypte et j'y ai vu la Grande Pyramide. C'est vraiment impressionnant. La pyramide carrée s'élève hors du sable (base AB autour de 230,36 m et hauteur MS autour de 146,59 m.) », raconte le grand-père de Bernd et Maria.
«Un triangle rectangle bleu (EMS) pouvait être vu sur un panneau à côté de la pyramide. La distance e a été donnée à 11 et la distance h à 14. Ensuite, il y avait aussi un 2 et à la fin un symbole pour le nombre Pi pouvait être vu. "
Si e = 11 kE (coudées royales, mesure dans l'Egypte ancienne) et h = 14 kE, alors les côtés du triangle bleu sont 20 fois plus petits que les côtés correspondants du triangle bleu de la pyramide réelle. Alors, quelle longueur avait une coudée royale? 3 points bleus.
Comment les nombres 11, 14 et 2 se rapprochent-ils du nombre Pi? Le triangle bleu conduit par une construction simple à un "rectangle d'or" (encore une fois une bonne approximation). À quoi ressemble une telle construction? (2 + 2 points rouges)

esp

674

"Hace muchos años estuve en Egipto y también vi allí la pirámide de Keops. Es realmente impresionante. La pirámide cuadrada se eleva desde la arena (el borde de la base AB alrededor de 230,36 m y la altura MS alrededor de 146,59 m.)", les dijo el abuelo de Bernd y María.
"Un cartel junto a la pirámide mostraba un triángulo rectángulo azul (EMS). El segmento rectilíneo e se indicó con 11 y la distancia h con 14. Además, se podía leer una „2“ y, finalmente, había un símbolo del número pi".
Si se elige e =11 kE (codos reales, medida en el antiguo Egipto) y h = 14 kE, entonces los lados del triángulo azul son 20 veces más pequeños que los lados correspondientes del triángulo azul de la pirámide real. Entonces, ¿cuánto medía un codo real? 3 puntos azules.
Utilizando los números 11, 14 y 2, ¿cómo se obtiene una aproximación al número pi? El triángulo azul conduce a un "rectángulo dorado" por una construcción sencilla (de nuevo, una buena aproximación). ¿Qué aspecto tiene esa construcción? (2+2 puntos rojos)

en

674

“Many years ago I went to Egypt and visited the Pyramid of Cheops. It's really impressive. Straight from the sand this square-based pyramid rises up (basic edge AB about 230,36 m and height MS around 146,59 m.)”, the grandpa of Bernd and Maria said.
“On the sign next to the pyramid I could see a blue right-angled triangle (EMS). The line segment e was given with 11 and the line segment h with 14. Then I could make out a 2 and in the end there was a symbol that could be identified as the number pi”
If e =11 kE (royal ell, measure in old Egypt) and h = 14 kE, the blue triangle is 20 times smaller, than the according side of the actually pyramid's blue triangle. So how long was one royal ell? 3 blue points.
How do you get approximate pi using the numbers 11, 14 and 2? The blue triangle through an easy construction leads to a „golden rectangle“ (again a good approximation). How would such a construction look like? (2+2 red points)

it

674

“Tanti anni fa sono stato in Egitto e lì ho anche visto il piramide di Cheope; è veramente impressionante. Dalla sabbia si eleva la piramide quadrata (spigolo di base AB ca. 230,36 m ed altezza MS ca. 146,59 m).”, raccontava il nonno di Bernd e Maria.
“Su un cartello accanto alla piramide si vedeva un triangolo rettangolare blu (EMS). Il segmento ‘e’ era indicato con 11 ed il segmento ‘h’ con 14. Poi si poteva leggere un 2 ed alla fine il simbolo per il numero Pi.”
Se si mette e = 11 kE (königliche Ellen [cubiti reali]; cioè una misura nell’Egitto d’epoca) e h = 14 kE, il triangolo blu risulta 20 volte più piccolo della piramide in realtà. Quale lunghezza aveva quindi una “königliche Elle”? 3 punti blu.
Come si può approssimare il numero Pi coi nueri 11, 14 e 2? Il triangolo blu può essere trasformato facilmente in un “triangolo d’oro” (di nuovo come approssimazione). Quale sarebbe questa costruzione? (2 + 2 punti rossi)

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von P. C. Zerbe, danke. --> als pdf <--
Die Verwendung von nur einer "2" für eine Näherung an Pi von Hans, danke : 2 + 14/11 = 3,272727.... Weiter weg, aber warum nicht.


Aufgabe 3

675. Wertungsaufgabe

deu

675

„Schaut mal.“,sagte Lisa. „Schön“. „Ich hatte  eine Strecke AB = 12 cm und dann noch den Punkt C mit AC = 4 cm eingezeichnet. Anschließend habe ich dann die passenden Halbkreise konstruiert. (erst den blauen und dann die weißen.) Mein Lehrer hat später mir gezeigt, wie ich den roten Kreis konstruieren kann, der die drei Halbkreise berührt.“
Wie groß sind der Umfang und Flächeninhalt der blauen Fläche, die Lisa ohne Hilfe des Lehrers konstruiert hatte? 4 blaue Punkte.
Wie groß sind der Umfang und Flächeninhalt des roten Kreises? 6 rote Punkte.

Termin der Abgabe 20.05.2021. Срок сдачи 20.05.2021. Ultimo termine di scadenza per l´invio è il 20.05.1921. Deadline for solution is the 20th. May 2021. Date limite pour la solution 20.05.2021. Soluciones hasta el 20.05.2021. Beadási határidő 2021.05.20. 截止日期: 2021.05.20 - 请用徳语或英语回答。

chin

675

675道题

„来看一下。“,丽莎说。
„很漂亮“。

我先画了一条直线AB,AB = 12 厘米,然后再取一个点C ,使 AC = 4 厘米。
最后我又分别画出了与其匹配的半圆。(先是蓝色的,然后是白色的)
后来我的老师教我,怎么画出那个与三个半圆相切的红色的圆。“

求在没有老师帮助之前,丽莎画出的蓝色区域部分的周长和面积。 4个蓝点
那个红色圆的周长和面积又是多少呢? 6个红点

截止日期: 2021.05.20 - 请用徳语或英语回答。

rus

675

«Смотрите», сказала Лиза. "Красиво." «Я нарисовала отрезок AB = 12 см, а затем ещё точку C с AC = 4 см. Затем я построила соответствующие полуокружности. (Сначала синяя, а затем белые). Позже мой учитель показал мне, как я могу построить красную окружность, которая касается трёх полуокружностей ».
Каковы периметр и площадь синей плоскости, которую Лиза построила без помощи учителя? 4 синих очка.
Каковы периметр и площадь красной окружности? 6 красных очков.

hun

675

„Nézd már” – mondta Lisa. „Szép.” AB = 12 cm és az AC= 4 cm . Azután megszerkesztettem a félköröket (előbb a kéket, aztán a fehéreket). A tanárom megmutatta, hogyan tudom megszerkeszteni a piros kört úgy, hogy a félköröket érintse.”
Mekkora a kerülete és a területe a kék felületnek, amit Lisa a tanár segítsége nélkül szerkesztett? 4 kék pont
Mekkora a kerülete és a területe a piros körnek? 6 piros pont

frz

675

"Jetez un œil.", dit Lisa. "Jolie". «J'avais dessiné AB = 12 cm puis C avec AC = 4 cm. Ensuite, j'ai construit les demi-cercles appropriés. (D'abord le bleu, puis le blanc). Un peu plus tard, mon professeur m'a montré comment je peux construire le cercle rouge qui touche les trois demi-cercles."
Quelle est la circonférence et la superficie de la surface bleue que Lisa avait construite sans l'aide de son professeur? 4 points bleus.
Quelle est la circonférence et la surface du cercle rouge? 6 points rouges.

esp

675

"Mira", dijo Lisa. "Bonito". "Había marcado un segmento rectilíneo AB = 12 cm y luego el punto C con AC = 4 cm. Luego construí los semicírculos correspondientes. (Primero el azul y luego los blancos). Mi profesor me enseñó después a construir el círculo rojo que toca los tres semicírculos".
¿Cuál es el perímetro y el área del área azul que Lisa construyó sin la ayuda del profesor? 4 puntos azules.
¿Cuál es la circunferencia y el área del círculo rojo? 6 puntos rojos.

en

675

Look!”,said Lisa. “Nice!” „I drew a line segment AB = 12 cm and then I added C with AC = 4 cm. Next I constructed the fitting semi-circle. (first the blue one then the white one.) My teacher later showed me how I can construct the red circle, which touches the three semi-circles.“
How big are area and perimeter of the blue area, which Lisa constructed without her teacher's help? 4 blue points.
How big are area and perimeter of the red circle? 6 red points.

it

675

“Guardate!”, esclamava Lisa. “Che bello!”. “Ho iniziato con un segment AB = 12 cm nel quale ho inserito C con AC 4 cm. Poi ho costruito tutti i semicerchi (proma quello blu, poi quelli bianchi). L’insegnante mi ha spiegato come si può costruire il cerchio rosso che tocca tutt’e tre semicerchi.
Quale sono la circonferenza e l’area della superficie blu che Lisa aveva costruito senza l’aiuto dell’insegnante? 4 punti blu
Quale sono la circonferenza e l’area del cerchio rosso? 6 punti rossi

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Magdalene, danke. --> pdf <--


Aufgabe 4

676. Wertungsaufgabe

deu

Der Opa von Bernd und Maria hatte über die schöne Aufgabe aus der letzten Woche sehr gestaunt. Er nahm ein Blatt und zeichnete die blaue Figur. „Es sind immer Halbkreise.“, sagte der Opa. AB= 12 cm, AC=DB = 2 cm.

676 blau

Wie groß sind Flächeninhalt und Umfang der blauen Fläche? (4 blaue Punkte)
Maria konstruierte noch einen roten Kreis in Opas Bild.

676

Der rote Kreis berührt die blaue Fläche. Oben passiert das von Innen, unten dagegen von außen. Wie groß sind Flächeninhalt und Umfang der roten Kreises? (4 rote Punkte)

Termin der Abgabe 27.05.2021. Срок сдачи 27.05.2021. Ultimo termine di scadenza per l´invio è il 27.05.1921. Deadline for solution is the 27th. May 2021. Date limite pour la solution 27.05.2021. Soluciones hasta el 27.05.2021. Beadási határidő 2021.05.27. 截止日期: 2021.05.27 - 请用徳语或英语回答。

chin

第676题

伯恩德和玛丽亚的爷爷对他们上周做的出色的题目感到惊讶。
他拿出一张纸,画了这张蓝色的图。 “它们都是半圆。”爷爷说。
AB = 12厘米,AC = DB = 2厘米。

676 blau


那么蓝色区域的面积和周长是多少? (4个蓝点)

玛丽亚在爷爷画的图上又画了一个红色的圆。
红色的圆相切于蓝色区域,上边从内部相切,而下边和外部相切。

676


求红色圆的面积和周长是多少? (4个红点)

截止日期: 2021.05.27 - 请用徳语或英语回答。

rus

Дед Бернда и Марии был поражён красивой задачей прошлой недели. Он взял лист бумаги и нарисовал синюю фигуру. «Это все полукруги», сказал дедушка. AB = 12 см, AC = DB = 2 см.

676 blau

Насколько велики площадь и периметр синей области? (4 синих очка) Мария построила ещё красный круг на рисунке деда.

676

Красный круг касается синей области. Вверху это происходит изнутри, а внизу снаружи. Насколько велики площадь и длина окружности красного круга? (4 красных очка)

hun

Bernd és Mária nagypapája a múlt heti érdekes feladaton nagyon csodálkozott. Vett egy papírtlapot és megszerkesztette a kék ábrát. „Ezek mindig félkörök.” – mondta nagypapa. AB= 12 cm, AC=DB = 2 cm.

676 blau

Mekkora a területe és a kerülete a kék felületnek? 4 kék pont

Mária szerkesztett még egy piros kört nagypapa rajzába.

676

A piros kör érinti a kék felületet. Fent belülről, lent ezzel szemben kívülről. Mekkora a területe és a kerülete a piros köröknek? 4 piros pont

frz

Le grand-père de Bernd et Maria était étonné de l'excellent travail qu'ils avaient accompli la semaine dernière. Il prit une feuille de papier et dessina la silhouette bleue. "Il y a toujours des demi-cercles", a déclaré grand-père. AB = 12 cm, AC = DB = 2 cm.

676 blau

Quelle est la superficie et le périmètre de la zone bleue? (4 points bleus)
Maria a construit un cercle rouge sur la photo de grand-père.

676


Le cercle rouge touche la zone bleue. En haut, cela se passe de l'intérieur, mais en bas de l'extérieur. Quelle est la superficie et la circonférence du cercle rouge? (4 points rouges)

esp

El abuelo de Bernd y María se había quedado muy sorprendido por la bonita tarea de la semana pasada. Cogió una hoja y dibujó la figura azul. "Siempre son medios círculos", dijo el abuelo. AB= 12 cm, AC=DB = 2 cm.

676 blau

¿Cuáles son el área y el perímetro de la figura azul? (4 puntos azules)

María construyó otro círculo rojo en la figura del abuelo.

676

El círculo rojo toca la superficie azul. En la parte superior toca desde el interior, en la parte inferior toca desde el exterior. ¿Cuál es el área y la circunferencia del círculo rojo? (4 puntos rojos)

en

The grandpa of Bernd and Maria was quite impressed by the nice task from of last week. He took a sheet of paper and drew a blue figure. “These are always semi-circles.”, grandpa said. AB= 12 cm, AC=DB = 2 cm.

676 blau

How big are area and perimeter of the blue area? (4 blue points)

Maria constructed another circle inside grandpa's picture.

676

The red circle touches the blue area. At the top this happens from the inside, at the button, in contrast, this happens from the outside. How big are area and perimeter of the red circle? (4 red points)

it

Il nonno di Bernd e Maria si era meravigliato per il compito bellissimo della settimana scorsa Così ispirato, disegnava la figura blu. “Sono tutti semicerchi.”, diceva il nonno. AB = 12 cm, AC = DB = 2 cm.

676 blau

Quale sono l’area e la circonferenza della figura blu? (4 punti blu)

Maria complettava il disegno del nonno con un cerchio rosso.

676

Questo cerchio rosso tocca l’area blu; in alto dall’interno, in basso dall’esterno. Quale sono l’area e la circonferenza del cerchio rosso? (4 punti rossi)

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Günter S.,danke. --> pdf <--


Aufgabe 5

677. Wertungsaufgabe

deu

„Schau mal, ich habe 60 rote Würfel (jeder mit a = 2 cm) geschenkt bekommen. Damit die alle auf den Tisch passen, habe ich einen Quader gelegt, der ist zwei Würfel breit, einen Würfel hoch und 30 Würfel lang.“, sagte Maria zu ihrem Bruder. Wie viele echt verschiedene Quader lassen sich aus jeweils 60 Würfeln legen oder stapeln? (Ein bloßes Vertauschen von Breite, Höhe und Länge zählt nicht als anderer Quader.) (3 blaue Punkte) Welcher der möglichen Quader hat die kleinste Oberfläche? (+ 2 blaue Punkte)
Maria legt einen der roten Würfel vor sich hin. Dann nimmt sie weitere Würfel, bei denen sie Seiten schwarz färbt. Die Färbungen nimmt sie so vor, dass die gefärbten Würfeln echt verschieden sind – das bloße Drehen eines Würfels ändert nichts. Wie viele Würfel hat Maria dann am Ende vor sich hingelegt? (4 rote Punkte)
Termin der Abgabe 03.06.2021. Срок сдачи 03.06.2021. Ultimo termine di scadenza per l´invio è il 03.06.1921. Deadline for solution is the 3th. June 2021. Date limite pour la solution 03.06.2021. Soluciones hasta el 03.06.2021. Beadási határidő 2021.06.03. 截止日期: 2021.06.03 - 请用徳语或英语回答。

chin

第677道题

“看,我得到的礼物是60个红色的骰子。(每个骰子的边长都是2厘米)
为了让它们更适合于放在桌子上,我把它们垒成一个长方体。长方体的宽是两个骰子,高是一个骰子,长是三十个骰子。”玛丽雅对她哥哥说。
那么每60个骰子可以垒成多少个真正不同的长方体?(如果仅仅是长、宽、高互换的话不能算作是一个新的长方体。)(3个蓝点)
问:在这些可能垒出来的长方体当中哪个长方体的表面积最小?(加2个蓝点)
玛丽雅在她面前先放了一个红色的骰子, 然后她又拿起骰子,把它涂成了黑色。她用这种涂色的方式,使被涂色的骰子和其他的相区别,但是如果只是旋转骰子不能算是改变。
最后玛丽雅在她自己面前放了多少个骰子?(4个红点)

截止日期: 2021.06.03 - 请用徳语或英语回答。

rus

«Посмотри-ка, мне подарили 60 красных кубиков (каждый с a = 2 см). Для того чтобы все поместились на столе, я разложила их в виде параллелепипеда шириной два кубика, высотой один кубик и длиной 30 кубиков», сказала Мария своему брату. Сколько по настоящему различных параллелепипедов можно составить из 60 кубиков? (Поменять лишь ширину, высоту и длину между собой не считается другим параллелепипедом.) (3 синих очка.)
Какой из возможных параллелепипедов имеет минимальную площадь поверхноти? (+ 2 синих очка).
Мария положила один из красных кубиков перед собой. Потом она взяла ещё другие кубики и покрасила у них стороны в чёрный цвет. Она покрасила таким образом, чтобы покрашенные кубики по настоящему отличались — т. е. вращение кубика ничего не меняет. Сколько различных кубиков положила Мария в конце концов перед собой? (4 красных очка).

hun

„Nézd csak, kaptam 60 piros kockát (mindegyiknek a = 2 cm) ajándékba. Hogy mind az asztalra férjen összeraktam belőlük egy téglatestet, ami 2 kocka széles, egy kocka magas és 30 kocka hosszú.” – mondta Mária a bátyjának. Mennyi igazán különböző téglatestet lehet a 60 kockából kitenni vagy egymásra rakni? (Egy csak a szelességét, magasságát, hosszát felcserélt téglatest nem számít más téglatestnek.) 3 kék pont A lehetséges téglatestek melyikének a legkisebb a felülete? (+2 kék pont)
Mária kitesz maga elé egyet a piros kockákból. Aztán vesz további kockákat, ahol az oldalakat feketére színezi. A festést úgy végzi el, hogy a befestett kockák mind különbözőek, a kockák fordításával nem változik semmi. A végén hány kockát vett ki maga elé Mária? 4 piros pont

frz

«Regardes, on m'a donné 60 dés rouges (chacun avec a = 2 cm). Pour qu'ils tiennent tous sur la table, j'ai construit un cuboïde de deux dés de large, un dé de haut et 30 dés de long », a expliqué Maria à son frère. Combien de cuboïdes différents peut-on construire ou empiler avec 60 dés? (Un simple échange de largeur, hauteur et longueur ne compte pas comme un cuboïde différent.) (3 points bleus) Lequel des cuboïdes possibles a la plus petite surface? (+ 2 points bleus)
Maria pose un des dés rouges devant elle. Puis elle prend plus de dés et colore les côtés en noir. Elle fait la coloration de telle sorte que les dés colorés sont vraiment différents - le simple fait de tourner un dé ne change rien. Combien de dés Maria a-t-elle déposés devant elle à la fin? (4 points rouges)

esp

"Mira, me han regalado 60 cubos rojos (cada uno con a = 2 cm). Para que cupieran todos en la mesa, hice un cubo de dos cubos de ancho, uno de alto y 30 de largo", le dijo María a su hermano. ¿Cuántos cuboides realmente diferentes se pueden colocar o apilar a partir de 60 cubos cada uno? (El simple hecho de intercambiar la anchura, la altura y la longitud no cuenta como un cubo diferente). (3 puntos azules) ¿Cuál de los posibles cuboides tiene la menor superficie? (+ 2 puntos azules)
María pone uno de los cubos rojos delante de ella. Luego toma otros cubos y colorea los lados de negro. Colorea los cubos de tal manera que los cubos coloreados son realmente diferentes - el simple hecho de girar un cubo no cambia nada. ¿Cuántos cubos tiene María delante? (4 puntos rojos)

en

“Look, I have been presented with 60 red cubes (each with a = 2 cm). Just to make sure they all fit the table, I built a cuboid. It is two cubes wide, one cube tall and 30 cubes long.”, Maria told her brother. How many real different cuboids can be created by laying or stacking 60 cubes? (Just switching width, height and length doesn't count as another cuboid.) (3 blue points) Which one of the possible cuboids does have the smallest face? (+ 2 blue points)
Maria lays one of the red cubes in front of her. Then she takes another cube, on which she colors some sides in black. She does the coloring in a way, that the colored cubes are really different from each other in the end – just rotating them wouldn't change anything. How many cubes does Maria finally have in front of her? (4 red points)

it

„Guarda, mi hanno regalato 60 dadi rossi (ognuno con a = 2 cm). Per metterli tutti su questo tavolo, ho composto un cuboide, che ha una larghezza di due dadi, una altezza di un dado ed una lunghezza di 30 dadi.”, Maria diceva a suo fratello. Quanti cuboidi che siano veramente differenti si possono costuire, usando sempre tutti i 60 dadi? (Lo solo scambio di larghezza, lunghezza ed altezza non significa un cuboide differente) (3 punti blu). Quale di questi dadi ha la minima superficie (+2 punti blu)
Maria posa uno dei dadi rossi davanti a se. Poi prende altri dadi, dei quali annerisce alcuni lati. Lo fa nel modo che tutti i dadi anneriti siano veramente differenti (girare un dado non cambia niente). Quanti dadi ha posato davanti a se quando finisce il suo lavoro? (4 punti rossi)

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Maximilian, danke. --> pdf <--
Die rote Aufgabe lässt sich natürlich erweitern, in dem Maria mehr als nur zwei Farben verwendet. siehe auch Aufgabe 606 und allgemein: https://de.wikipedia.org/wiki/Lemma_von_Burnside


 Aufgabe 6

678. Wertungsaufgabe

deu

In der letzten Woche waren noch viele rote Würfel übrig geblieben. Bernd hatte daraufhin dieses Gebilde zusammengeleimt. „Man könnte das „Kunstwerk“ Würfelknoten nennen, denn wenn man genau hinschaut, sieht das so aus.“, meinte Bernd. Lisa grübelte kurz und sagte dann: „Ja das stimmt. Man kann es richtig gut nachvollziehen, wenn ich das „Kunstwerk“ drehe, sieht man das genau.“
Wie viele Würfel hat Bernd benutzt? Wie groß ist die Oberfläche? (Kantenlänge jedes Würfels beträgt 2 cm.) (2+2 blaue Punkte)

678

Auf dem Bild erkennt man unten rechts einen kleinen Punkt. Der soll eine Öffnung für einen ganz dünnen Faden darstellen. Wie lang wäre ein möglichst kurzer Faden, der durch alle Würfel hindurch geht und wieder an dem eingezeichneten Punkt endet? Dabei geht der Faden immer durch Löcher, die in der Mitte eines Würfels liegen. Der Weg innerhalb eines Würfels ist frei wählbar. (6 rote Punkte)

Termin der Abgabe 10.06.2021. Срок сдачи 10.06.2021. Ultimo termine di scadenza per l´invio è il 10.06.1921. Deadline for solution is the 10th. June 2021. Date limite pour la solution 10.06.2021. Soluciones hasta el 10.06.2021. Beadási határidő 2021.06.10. 截止日期: 2021.06.10 - 请用徳语或英语回答。

chin

第678题

上周还剩下很多红色的骰子,贝恩德把它们粘合起来。
“人们可以称它为"艺术品",因为当你仔细看的时候,它真的很像,”贝恩德说。
丽莎沉思了一会儿,然后说:“对,没错! 当我把这个"艺术品"旋转一下时,人们就能够更好的理解。”
请问贝恩德用了多少个骰子? 表面是多大?(每个骰子的边长是2厘米。)。 (2 + 2 个蓝点)

678

在这张图片中,人们可以看到右下角有一个小点。 如果这代表一条非常细的线的开端,那么从这儿穿过所有骰子,最后再回到这个点,最可能短的线是多长?线要一直通过骰子中间的孔,不过可以自由选择每个骰子内部的路径。 (6个红点)
截止日期: 2021.06.10 - 请用徳语或英语回答。

rus

На прошлой неделе осталось ещё много красных кубиков. Бернд склеил из них эту конструкцию. «Вы можете назвать это «произведение искусства» кубическим узлом, потому что, если присмотреться, оно так именно выглядит», сказал Бернд. Лиза ненадолго задумалась, а затем сказала: «Да, верно. Это действительно можно хорошо понимать. Когда я вращаю это «произведение искусства», вы можете это точно увидеть ». Сколько кубиков использовал Бернд? Какова площадь поверхности данной конструкции? (Длина ребра каждого кубика 2 см). (2 + 2 синих очка)

678

На картинке вы можете справа внизу увидеть маленькую синюю точку. Она изображает отверстие для очень тонкой нити. Какой длины будет самая короткая нить, которая проходит через все кубики и заканчивается опять в нарисованной точке? При этом нить всегда проходит через отверстия в середине кубика. Путь внутри кубика выбирается произвольно.
(6 красных очков)

hun

A múlt héten sok piros kocka megmaradt. Bern ezt az építményt rakta ki belőlük. „Nevezhetnénk a „műalkotást” kockacsomónak, mert ha alaposan megnézzük, úgy néz ki.” – mondta Bernd. Ezen elgondolkodott kicsit Lisa és azt mondta: „Igen, nagyon jól el lehet képzelni, ha a „műalkotást” megfordítjuk, és úgy megnézzük.”
Hány kockát vett Bernd? Mekkora a felülete (élhosszúság 2 cm)? 2+2 kék pont

678

A képen látható jobb oldalon, alul egy kis pont. Ezt képzeljük el egy vékony fonál nyílásának. Milyen hosszú lenne a lehető legrövidebb fonál, ami minden kockán áthalad és végül a jelzett pontban végződik? A fonál mindig a kockák közepén megy át. Az út a kockán belől szabadon választható. 6 piros pont

frz

Il restait beaucoup de cubes rouges la semaine dernière. Bernd a ensuite collé cette structure. «On peut appeler « l'œuvre d'art » un nœud de cube, car si tu regarde de près, cela ressemble à ceci», a déclaré Bernd. Lisa a réfléchi brièvement puis a dit: «Oui, c'est vrai. Tu peut vraiment comprendre que lorsque je tourne '"l'œuvre d'art", tu peux vraiment le voir. "
Combien de dés Bernd a-t-il utilisés? Quelle est la taille de la surface (la longueur du bord de chaque cube est de 2 cm.). (2 + 2 points bleus)

678


Sur la photo, on peut voir un petit point en bas à droite. Cela devrait représenter une ouverture pour un fil très fin. Quelle sera la longueur du fil le plus court possible qui traverse tous les cubes et se termine à nouveau au point dessiné. Le fil passe toujours par des trous au milieu d'un cube. Le chemin dans un cube est librement sélectionnable. (6 points rouges)

esp

La semana pasada aún quedaban muchos cubos rojos. En consecuencia, Bernd había pegado esta estructura. "Se podría decir que esta "obra de arte" es un nudo cúbico, porque si se mira de cerca, se parece a esto", dijo Bernd. Lisa reflexionó por un momento y entonces: "Sí, así es. Realmente se puede entender bien. Si giro la "obra de arte", lo puedo ver exactamente".
¿Cuántos cubos utilizó Bernd? ¿Qué tamaño tiene la superficie (longitud de las aristas de cada cubo es de 2 cm)? (2+2 puntos azules)

678

En la imagen se puede ver un punto pequeño. Se supone que esto es una apertura para un hilo muy fino. ¿Qué longitud tendría el hilo más corto posible que atraviesa todos los cubos y termina de nuevo en el punto dibujado? El hilo siempre pasa por los agujeros que se encuentran en el centro del cubo. La trayectoria dentro de un cubo puede elegirse libremente. (6 puntos rojos)

en

Last week a lot of red cubes were left. So Bernd glued together the following construction. “You could name this “art piece!” a cube knot, because if you take a close look, at it you it just looks alike.”, Bernd said. Lisa thought about it and answered: “Yeah, that's true. That's understandable, especially if you turn the “art piece” around, you can see it clearly.”
How many cubes did Bernd use? How big is their face (edge length of every cube is 2 cm.). (2+2 blue points)

678

On the picture you will recognize a small point at the right bottom. It represents a small opening for a very thin twine. How long would such a very short twine be, that would go through all the cubes and ends at the drawn point again. The twine is always pulled through holes which lay in the center of the cubes. You are free to choose its way inside the cubes. (6 red points)

it

Dalla settimana scorsa sono sopravanzati tanti dadi rossi. Bernd ne ha incollato la tale creazione. “Questa ‘opera d’arte’ potrebbe essere chiamata nodo di dadi, perchè sembra proprio essere quello.”, Bernd diceva. Lisa ne pensava un attimo e poi replicava: “Sì,è vero. Especialmente quando si gira la tua ‘opera d’arte’, si vede benissimo.”
Quanti dadi ha usato Bernd? Qual’è la superficie (lunghezza degli spigoli di ogni dado: 2 cm). (2+2 punti blu)

678

Sul disegno si vede in basso a destra un piccolo punto. Quale sarebbe la lunghezza del filo più corto che passerebbe sotto a tutti I dadi per poi finire nel punto dipinto? Il filo passa sempre per buchi al centro dei dadi, ma il percorso all’interno può essere scelto liberamente. (6 punti rossi)

Lösung/solution/soluzione/résultat/Решение:

Die rote Aufgabe war leider etwas missverständlich formuliert. Es sollte Würfelseitenmitte heißen und nicht Würfelmitte.

Die Lösung bezieht sich auf Ersteres:
Schöne Ergänzung zur Aufgabe: http://www.walser-h-m.ch/hans/Miniaturen/W/Wuerfelknoten/Wuerfelknoten.pdf

Musterlösung von Reinhold, danke
ich gehe davon aus, dass das "Gebilde" von allen Seiten gleich aussieht und folglich jede Außenseite vier Würfel enthält, von denen zwei auch zu einer benachbarten Seite gehören, und insbesondere dem 2x2x2er Innenbereich in jeder 2x2-Schicht nur ein Würfel fehlt, insgesamt also zwei.
Damit hat Bernd
   6 * 4 - 3 * 2 + (2^3 - 2) = 24
Würfel benutzt.
Weiter besteht die Oberfläche des "Gebildes" genau aus allen von jeweils einer der sechs Seiten sichtbaren kleinen Würfelseiten, also aus
   6 * 13 = 78
kleinen Würfelseiten und ist damit
   78 * 2^2 = 312 cm^2
groß.

Bei der Fadenaufgabe gehe ich davon aus, dass der Faden jeden kleinen Würfel (mindestens einmal) durch die Mitte einer WürfelSEITE "betreten" und durch die Mitte einer anderen Würfelseite wieder verlassen soll - und dabei nicht durch die WürfelMITTE gehen muss, aber eben ein unendlich kurzer Durchgang (gleicher Ein- und Ausgang) nicht ausreicht.
Daraus folgt dann zunächst - außer beim Startwürfel unten rechts -, dass der (kürzeste) Weg durch Würfel, die nur zwei Nachbarn haben, bereits festgelegt ist. Das gilt auch für auf diese Weise zweimal erreichte Würfel, da ein doppelter Fadendurchgang durch einen Würfel, wie wir später sehen werden, nicht notwendig ist (wieder mit Ausnahme des Startwürfels) und bei dem Verhältnis der möglichen Durchgangslängen auf jeden Fall zu einer Vergrößerung der Fadenlänge führen würde.
Zur Sicherheit formalisiere ich aber nun das "Gebilde". Ich bezeichne die Würfel durch ihre "Koordinaten" (x, y, z), x von links nach rechts, y von vorn nach hinten, z von unten nach oben gezählt, x, y, z = 1, 2, 3, 4.

Damit sind die 18 Würfel der 6 Außenseiten und ihre Nachbarwürfel
   (1, 3, 3) links,            Nachbarn (2, 3, 3), (1, 2, 3),
   (1, 2, 3) links,            Nachbarn (1, 3, 3), (1, 1, 3), (2, 2, 3),
   (1, 1, 3) vorn und links,   Nachbarn (1, 2, 3), (1, 1, 2),
   (1, 1, 2) vorn und links,   Nachbarn (1, 1, 3), (2, 1, 2),
   (2, 1, 2) vorn,             Nachbarn (1, 1, 2), (3, 1, 2), (2, 2, 2),
   (3, 1, 2) vorn,             Nachbarn (2, 1, 2), (3, 2, 2),

   (2, 2, 1) unten,            Nachbarn (3, 2, 1), (2, 2, 2),
   (3, 2, 1) unten,            Nachbarn (2, 2, 1), (4, 2, 1), (3, 2, 2),
   (4, 2, 1) unten und rechts, Nachbarn (3, 2, 1), (4, 3, 1),
   (4, 3, 1) unten und rechts, Nachbarn (4, 2, 1), (4, 3, 2),
   (4, 3, 2) rechts,           Nachbarn (4, 3, 1), (4, 3, 3), (3, 3, 2),
   (4, 3, 3) rechts,           Nachbarn (4, 3, 2), (3, 3, 3),

   (3, 4, 2) hinten,           Nachbarn (3, 4, 3), (3, 3, 2),
   (3, 4, 3) hinten,           Nachbarn (3, 4, 4), (3, 4, 2), (3, 3, 3),
   (3, 4, 4) oben und hinten,  Nachbarn (2, 4, 4), (3, 4, 3),
   (2, 4, 4) oben und hinten,  Nachbarn (2, 3, 4), (3, 4, 4),
   (2, 3, 4) oben,             Nachbarn (2, 2, 4), (2, 4, 4), (2, 3, 3),
   (2, 2, 4) oben,             Nachbarn (2, 2, 3), (2, 3, 4)

sowie die 6 Innenwürfel

   (2, 2, 3), Nachbarn (1, 2, 3), (2, 2, 4), (2, 3, 3), (2, 2, 2),

   (2, 2, 2), Nachbarn (2, 1, 2), (2, 2, 1), (3, 2, 2), (2, 2, 3),

   (3, 2, 2), Nachbarn (3, 1, 2), (3, 2, 1), (3, 3, 2), (2, 2, 2),

   (3, 3, 2), Nachbarn (4, 3, 2), (3, 4, 2), (3, 3, 3), (3, 2, 2),

   (3, 3, 3), Nachbarn (4, 3, 3), (3, 4, 3), (2, 3, 3), (3, 3, 2),

   (2, 3, 3), Nachbarn (1, 3, 3), (2, 3, 4), (2, 2, 3), (3, 3, 3).

Entsprechend obiger Bemerkungen ergeben sich zunächst folgende "zwingende Wege" (der Startwürfel ist später noch zu modifizieren) - die jeweiligen daraus bereits ermittelbaren Fadendurchgangslängen a (gerader Durchgang) bzw. b = a/2 Wurzel(2) (über Eck, mit Satz des Pythagoras) stehen darunter:
   (2, 3, 3) - (1, 3, 3) - (1, 2, 3) - (1, 1, 3) - (1, 1, 2) - (2, 1, 2) - (3, 1, 2) - (3, 2, 2),
                   b           a           b           b           a           b
   (2, 2, 2) - (2, 2, 1) - (3, 2, 1) - (4, 2, 1) - (4, 3, 1) - (4, 3, 2) - (4, 3, 3) - (3, 3, 3),
                   b           a           b           b           a           b

   (3, 3, 2) - (3, 4, 2) - (3, 4, 3) - (3, 4, 4) - (2, 4, 4) - (2, 3, 4) - (2, 2, 4) - (2, 2, 3).
                   b           a           b           b           a           b

Die kürzeste Verbindung im Zentrum ist nun nicht, dem Verlauf des dicken Knotens folgend, der senkrechte Durchgang, sondern das Abknicken. Durch Einarbeitung des Ein- und Ausgangs A folgt für den kürzesten Fadenverlauf:
   A - (4, 2, 1) - (4, 3, 1) - (4, 3, 2) - (4, 3, 3) - (3, 3, 3) - (3, 3, 2) - (3, 4, 2) - (3, 4, 3) - (3, 4, 4) - (2, 4, 4) - (2, 3, 4) - (2, 2, 4) - (2, 2, 3)
           a           b           a           b           b           b           b           a           b           b           a           b           b
     - (2, 3, 3) - (1, 3, 3) - (1, 2, 3) - (1, 1, 3) - (1, 1, 2) - (2, 1, 2) - (3, 1, 2) - (3, 2, 2) - (2, 2, 2) - (2, 2, 1) - (3, 2, 1) - (4, 2, 1) - A.
           b           b           a           b           b           a           b           b           b           b           a           b

Die Länge des Fadens beträgt damit

   7 a + 18 b = a (7 + 18/2 Wurzel(2)) = 2 (7 + 9 Wurzel(2))

bzw. ca. 39,456 cm.


 Aufgabe 7

679. Wertungsaufgabe

deu

„Dieses Jahr hat viele Daten, die wie ein Palindrom erscheinen: 1.2.21, 12.1.21 oder auch 12.02.2021. Diese hier haben 4, 5 oder gar 8 Ziffern.“, sagte der Opa von Bernd.
4 Ziffern → Struktur T.M.JJ, 5 Ziffern → Struktur TT.M.JJ und 8 Ziffern TT.MM.JJJJ.
Welche Daten sind 2021 auch als Palindrom möglich, können vorbei sein oder noch kommen. - 5 blaue Punkte.
Aufzuzählen sind alle Daten (nur TT.MM.JJJJ), die Palindrome sind und zwischen den Jahren 2000 und 2100 liegen. - 5 rote Punkte.

Termin der Abgabe 17.06.2021. Срок сдачи 17.06.2021. Ultimo termine di scadenza per l´invio è il 17.06.1921. Deadline for solution is the 17th. June 2021. Date limite pour la solution 17.06.2021. Soluciones hasta el 17.06.2021. Beadási határidő 2021.06.17. 截止日期: 2021.06.17 - 请用徳语或英语回答。

chin

第679题

„今年有很多数据是以回文数的方式出现的。例如: 1.2.21、12.1.21, 12.02.2021也是这种形式。这些数字有四位数,五位数,甚至八位数。“ 贝恩德的爷爷说。
四位数的构成方式 :T.M.JJ, 五位数构成方式:TT.M.JJ,八位数构成方式:TT.MM.JJJJ.
在2021年还有哪些数据以回文数出现的,可以是过去的,也可以是还没有到的日期。(5个蓝点)
写出从2000年到2100年之间的所有以回文数形式出现的数据 (TT.MM.JJJJ)。(5个红点)

Termin der Abgabe 17.06.2021. 截止日期: 2021.06.17 - 请用徳语或英语回答。

rus

«В этом году много дат, которые выглядят как палиндром: 1.2.21, 12.1.21 или 12.02.2021. У них 4, 5 или даже 8 цифр», сказал дедушка Бернда.
4 цифры → структура д.М.гг, 5 цифр → структура дд.M.гг и 8 цифр → структура дд.MM.гггг.
Какие даты также возможны в качестве палиндрома в 2021 году, могут быть в прошлом или ещё впереди. - 5 синих очков.
Перечислите все даты (только дд.ММ.гггг), которые являются палиндромами и лежат между 2000 и 2100 годами. - 5 красных очков.

Обозначения:

д — день для значений от 1 до 9 (без нуля впереди) , М — месяц для значений от 1 до 9 (без нуля впереди), дд, ММ — день и месяц, с нулём впереди для значений от 1 до 9 гг — 2-символьное обозначение года (год пишется двумя последными цифрами) гггг — 4-символьное обозначение года (год пишется полностью)

hun

„Ebben az évben sok adat van, amik palindrómok: 1.2.21, 12.1.21 vagy a 12.02.2021 is. Ezek 4,5 vagy 8 számjegyűek.” – mondta Nagyapa Berndnek.
4 számjegy → T.M.JJ szerkezet, 5 számjegy → TT.M.JJ und 8 számjegy TT.MM.JJJJ szerkezet.
Mely adatok lehetségesek még, elmúlhattak, vagy mg jöhetnek 2021-ből? 5 kék pont
Sorolja fel az összes adatot (csak TT.MM.JJJJ), amelyek palindrómok 2000 és 2100 között. 5 piros pont

frz

« Cette année-ci a beaucoup de dates qui apparaissent comme un palindrome : 1.2.21, 12.1.21 ou encore 12.02.2021. Ceux-ci ont 4, 5 ou même 8 chiffres », a expliqué le grand-père de Bernd.
4 chiffres → structure J.M.AA, 5 chiffres → structure JJ.M.AA et 8 chiffres JJ.MM.AAAA.
Quelles dates sont également possibles en tant que palindrome en 2021, dans le passé ou à venir. - 5 points bleus.
Toutes les dates (uniquement JJ.MM.AAAA) qui sont des palindromes et se situent entre les années 2000 et 2100 doivent être répertoriées. - 5 points rouges.

esp

"Este año tiene muchas fechas que parecen un palíndromo: 1.2.21, 12.1.21 o incluso 12.02.2021. Éstas tienen 4, 5 o incluso 8 dígitos", dijo el abuelo de Bernd.
4 dígitos → estructura d.m.aa, 5 dígitos → estructura dd.m.aa y 8 dígitos dd.mm.aaaa. (d=día, m=mes, a=año) ¿Qué fechas de 2021 también son posibles como palíndromo, puede ser pasado o aún por venir? - 5 puntos azules.
Enumere todas las fechas (sólo dd.mm.aaaa) que son palíndromos y están entre los años 2000 y 2100. - 5 puntos rojos.

en

„This year had different dates, which look like a palindrome: 1.2.21, 12.1.21 as well as 12.02.2021. They have 4, 5 or even 8 digits.“, Bernd's grandpa said.
4 digits → structure T.M.JJ, 5 digits → structure TT.M.JJ and 8 digits TT.MM.JJJJ.
Which dates in 2021 are also possible as a palindrome? It doesn't matter if they are already over or still yet to come. - 5 blue points.
You have to write down all dates (only TT.MM.JJJJ), which are palindromes and can be found between the years 2000 and 2100. - 5 red points.

it

“Quest’anno ha tante date che sembrano un palindromo: 1.2.21, 12.1.21 o anche 12.02.2021. Queste date hanno 4, 5 o anche 8 cifre.”, diceva il nonno di Bernd.
4 cifre -> tipo T.M.JJ “giorno.mese.anno anno”, 5 cifre -> tipo TT.M.JJ giorno giorno.mese.anno anno ed 8 cifre -> tipo TT.MM.JJJJ giorno giorno. mese mese.anno anno anno anno.
Quale altre date di palindromo sono anche possible (possono anche essere già passate)? 5 punti blu.
Si faccia l’elenco (solo GG.MM.JJJJ “giorno giorno.mese mese.anno anno anno anno”), che siano palindromi e situati entro gli anni 2000 e 2100. – 5 punti rossi

Lösung/solution/soluzione/résultat/Решение:
Der Verfasser der Aufgaben feiert, wenn es klappt, seinen 85. Geburtstag auch an einem Palindromdatumstag: Struktut TT.M.JJ

rot: 29 im 21. Jahrhundert:
10.02.2001
20.02.2002
11.02.2011
21.02.2012
02.02.2020
12.02.2021
22.02.2022
03.02.2030
13.02.2031
23.02.2032
04.02.2040
14.02.2041
24.02.2042
05.02.2050
15.02.2051
25.02.2052
06.02.2060
16.02.2061
26.02.2062
07.02.2070
17.02.2071
27.02.2072
08.02.2080
18.02.2081
28.02.2082
09.02.2090
19.02.2091
29.02.2092
Hier noch das 22. Jahrhundert:
01.12.2110
11.12.2111
21.12.2112
31.12.2113
02.12.2120
12.12.2121
22.12.2122
03.12.2130
13.12.2131
23.12.2132
04.12.2140
14.12.2141
24.12.2142
05.12.2150
15.12.2151
25.12.2152
06.12.2160
16.12.2161
26.12.2162
07.12.2170
17.12.2171
27.12.2172
08.12.2180
18.12.2181
28.12.2182
09.12.2190
19.12.2191
29.12.2192
Dann dauert es wieder sehr lange:
30.03.3003
Lösung blau 9 Lösungen 12.x.21 mit x von 1 bis 9
(+ die zwei Palindrome aus der Aufgabenstellung, sind also insgesamt 11 Palindrome im Jahr 2021)


Aufgabe 8

680. Wertungsaufgabe

deu

„Was sind denn das für Wasserflecken auf deinem Schreibtisch?“, fragte Maria ihren Bruder. „Ich habe ein Experiment zum Auftrieb in Wasser gemacht. Ich bringe den Schreibtisch gleich in Ordnung.“
Bernd hatte einen Becher (Zylinder mit r = 3 cm) mit Wasser gefüllt. - Füllhöhe 10 cm.
Versuch 1: Er tauchte einen Eisenzylinder (r =1 cm, h = 5 cm) in das Wasser vollständig ein. Um wieviel cm stieg der Wasserspiegel an? 5 blaue Punkte
Versuch 2. Er verwendete einen Eichenholzzylinder (r =1 cm, h = 5 cm). Er stellte fest, der Holzzylinder schwimmt. Um wieviel cm stieg der Wasserspiegel an? 5 rote Punkte
Termin der Abgabe 24.06.2021. Срок сдачи 24.06.2021. Ultimo termine di scadenza per l´invio è il 24.06.1921. Deadline for solution is the 24th. June 2021. Date limite pour la solution 24.06.2021. Soluciones hasta el 24.06.2021. Beadási határidő 2021.06.24. 截止日期: 2021.06.24 - 请用徳语或英语回答。

chin

第680题

“你桌子上的水渍是怎么回事儿?” 玛丽雅问她哥哥。
“我做了一个关于水中浮力的实验。 一会儿我把桌子收拾好。”
贝恩德把一个杯子里(杯子是一个半径r = 3 厘米的圆柱体)装上水,水的高度是 10 厘米。

实验一: 他把一个铁质圆柱体(半径r = 1 厘米,高h = 5 厘米)完全浸入水中。 请问水位上升了多少厘米? (5个蓝点)
实验二: 他使用了一个橡木圆柱体(半径r = 1 厘米,高h = 5 厘米),他注意到这个木质圆柱漂浮在水面上。 那么水位上升了多少厘米? (5个红点)
截止日期: 2021.06.24 - 请用徳语或英语回答。

rus

«Что это за пятна от воды на твоём письменном столе?» - спросила Мария своего брата. «Я провёл эксперимент по подъёмной силе в воде. Я сейчас почищу стол. "
Бернд наполнил стакан (цилиндр с r = 3 см) водой. - высота заполнения 10 см.
Эксперимент 1: Он полностью погрузил железный цилиндр (r = 1 см, h = 5 см) в воду. На сколько сантиметров поднялся уровень воды? 5 синих очков
Эксперимент 2. Он использовал дубовый цилиндр (r = 1 см, h = 5 см). Он заметил, что деревянный цилиндр плавает. На сколько см поднялся уровень воды? 5 красных очков

hun

„Mik ezek a víztócsák az íróasztalodon?” – kérdezte Mária a bátyját. „Csak kísérleteztem a víz felhajtó erejével. Mindjárt rendbe teszem az íróasztalt.
Bernd megtöltött egy poharat (henger r = 3 cm) vízzel. Töltési magasság 10 cm.
1. kísérlet: Teljesen belemerített egy vashengert (r =1 cm, h = 5 cm) a vízbe. Hány cm-re emelkedett a vízszint? 5 kék pont
2. kísérlet: egy tölgyfahengert vett (r =1 cm, h = 5 cm). Megállapította, hogy a fahenger úszik. Hány cm-re emelkedett meg a vízszint? 5 piros pont

frz

« Quel genre de taches d'eau y a-t-il sur votre bureau ? » a demandé Maria à son frère. « J'ai fait une expérience sur la flottabilité dans l'eau. Je vais ranger le bureau dans un instant."
Bernd avait rempli un gobelet (cylindre avec r = 3 cm) d'eau.
- hauteur de remplissage 10 cm.
Expérience 1 : Il a complètement immergé un cylindre de fer (r = 1 cm, h = 5 cm) dans l'eau. De combien de centimètre le niveau de l'eau a-t-il augmenté ? 5 points bleus
Expérience 2. Il a utilisé un cylindre en chêne (r = 1 cm, h = 5 cm). Il remarqua que le cylindre en bois flottait. De combien de centimètre le niveau de l'eau a-t-il augmenté ? 5 points rouges

esp

"¿Qué son esas manchas de agua en tu escritorio?", le preguntó María a su hermano. "Estaba haciendo un experimento sobre la flotabilidad en el agua. Arreglaré el escritorio en un minuto". Bernd había llenado un vaso de precipitados (cilindro con r = 3 cm) con agua. - Altura de llenado 10 cm.
Experimento 1: Sumergió completamente un cilindro de hierro (r =1 cm, h = 5 cm) en el agua. ¿Cuántos centímetros ha subido el nivel del agua? 5 puntos azules
Experimento 2: Utilizó un cilindro de roble (r =1 cm, h = 5 cm). Descubrió que el cilindro de madera flota. ¿Cuántos centímetros ha subido el nivel del agua? 5 puntos rojos

en

“What about those water stains on my desk?”, Maria asked her brother. “I did an experiment on buoyancy of water. I'll be fixing the desk in a moment.
Bernd had a cup (cylinder with r = 3 cm) filled with water. - fill level 10 cm.
experiment 1: He dived an iron cylinder (r =1 cm, h = 5 cm) completely into the water. About how many cm did the water level rise? 5 blue points
experiment 2. He used an oak wood cylinder (r =1 cm, h = 5 cm). He recognized, that the cylinder was floating. About how many cm did the water level rise? 5 red points

it

“Come mai la tu ascrivania è tutta bagnata?”, Maria chiedeva a suo fratello. “Ho fatto un esperimento sulla spinta di galleggiamento dell’acqua. La scrivania sistemo dopo.”
Bernd aveva riempito un cilindro con r = 3 cm di acqua fino ad una altezza di riempimento di h = 10 cm.
Primo esperimento: Immergeva un cilindro di ferro (r = 1 cm, h = 5 cm) completamente nell’acqua. Per quanti centimetri si alzava il livello dell’acqua? 5 punti blu.
Secondo esperimento: Usava un cilindro di rovere (r = 1 cm, h = 5 cm). Si rendeva conto che questo cilindo galleggiava. Per quanti centimetri si alzava il livello dell’acqua? 5 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

 Hier die Musterlösung von Hans, danke. --> pdf <--
Da die Dichte von Eichenholz sehr unterschiedlich sein kann, gibt es auch entsprechend verschiedene Ergebnisse, diese Lassen sich mit dem vorgeschlagenen Lösungsweg überprüfen.


Aufgabe 9

681. Wertungsaufgabe

deu

„Schaut euch mal meine Konstruktionen an.“, sagte Lisa. „Sieht schön aus. Wie hast du die Konstruktionen ausgeführt?“, fragte Maria. „Die Konstruktion ist in beiden Fällen dieselbe, hier könnt ihr die Beschreibung nachlesen.“

681 1

  1. Ein Quadrat ABCD zeichnen.
  2. Seite CD verlängern, E ist 1 cm von D entfernt. Das erste blaue Dreieck zeichnen.
  3. Rechter Winkel bei E. Punkt F ist 2 cm von E entfernt. Das erste rote Dreieck zeichnen.
  4. Rechter Winkel bei F. Punkt G ist 3 cm von F entfernt. Das zweite blaue Dreieck zeichnen.
  5. Rechter Winkel bei G. Punkt H ist 4 cm von G entfernt. Das zweite rote Dreieck zeichnen. Die Konstruktion ist fertig.

Beim Bild oben hat das Quadrat eine Kantenlänge von 4 cm. Wie groß sind die Flächeninhalte beider blauen Dreiecke zusammen? 5 blaue Punkte

Beim zweiten Bild hat das Quadrat eine Kantenlänge von 8 cm.

681 2

Wie groß muss die Kantenlänge des Quadrats ABCD gewählt werden, damit H auf der Verlängerung von BA liegt? 5 rote Punkte

Termin der Abgabe 01.07.2021. Срок сдачи 01.07.2021. Ultimo termine di scadenza per l´invio è il 01.07.1921. Deadline for solution is the 1th. July 2021. Date limite pour la solution 01.07.2021. Soluciones hasta el 01.07.2021. Beadási határidő 2021.07.01. 截止日期: 2021.07.01 - 请用徳语或英语回答。

chin

第681题

681 1


„看一下我的构图。“, 丽莎说。
„看起来很漂亮!你是怎么做出来的?“, 玛丽雅问。
„这两种构图的方式是一样的, 你们可以看一下“。

  1. 画一个正方形ABCD。
    2. 把边CD延长至点E, 使点E到点D的距离是1厘米。构成第一个蓝色的三角形。
    3. 在点E处画一个直角,使点F到点E的距离是2厘米。构成第一个红色的三角形。
    4. 在点F再画一个直角,使点G到点F的距离是3厘米。构成第二个蓝色的三角形。
    5. 在点G再画一个直角,使点H到点G的距离是4厘米。第二个红色的三角形也画出来了。 这样构图就完成了。
    在上图中如果正方形的边长是4厘米,那么两个蓝色的三角形的面积之和是多少? 5个蓝点。

681 2

]第二幅图中正方形的边长是8厘米。
如果使点H正好在边BA的延长线上的话,正方形ABCD的边长应该是多少? 5个红点。
截止日期: 2021.07.01 - 请用徳语或英语回答。

rus

«Посмотрите, пожалуйста, на мои конструкции», сказала Лиза. «Выглядят красиво. Как ты сделала эти конструкции?», спросила Мария. «Конструкция одинакова в обеих случаях, здесь можете прочитать её описание».

681 1


  1. Нарисовать квадрат ABCD.
    2. Удлинить сторону CD, Е находится на расстоянии 1 см от D. Нарисовать первый синий треугольник.
    3. Угол у Е — прямоугольный. Точка F находится на расстоянии 2 см от Е. Нарисовать первый красный треугольник.
    4. Угол у F — прямоугольный. Точка G находится на расстоянии 3 см от F. Нарисовать второй синий треугольник.
    5. Угол у G — прямоугольный. Точка H находится на расстоянии 4 см от G. Нарисовать второй красный треугольник. Конструкция закончена.
    В верхней картине длина сторон квадрата составляет 4 см.
    Какова плoщадь обеих синих треугольников вместе взятых? 5 синих очков.

Во второй картине длина сторон квадрата составляет 8 см.

681 2


Какова должна быть длина сторон квадрата для того, чтобы точка Н находилась на удлинении ВА? 5 красных очков.

hun

„Nézzétek csak meg a szerkesztésemet” – mondta Lisa. „Nagyon szép. Hogy csináltad?” – kérdezte Mária. „ A szerkesztés mindkét esetben azonos, itt tudtok utánaolvasni.”

681 1

  1. Rajzolj egy ABCD négyszöget.
    2. Hoszzabbítsd meg a CD oldalt, E a D-től 1 cm távolságra van.
    3. Jobb szög az E pontnál. F pont 2 cm távolságra az E-től. Rajzold meg az első piros háromszöget.
    4. Jobb szög F-nél. G pont az F-től 3 cm-re van. Rajzold meg a második kék háromszöget.
    5. Jobb szög G pontnál. H pont 3 cm távolságra van a G ponttól. Rajzold meg a második piros háromszöget.
    Kész a szerkesztés. A fenti képen a négyszög oldalhossza 4 cm. Mekkora a felülete a két kék háromszögnek együtt? 5 kék pont

A második ábrán a négyszög széle 8 cm hosszú.

681 2

Mekkora legyen az oldalhossza az ABCD négyszögnek hogy a H a BA meghsszabbítására essen? 5 piros pont

frz

Jetez un œil à mes constructions », dit Lisa. "A l'air très beau. Comment as-tu fait ces constructions ? », a demandé Maria. "La construction est la même dans les deux cas, comme suit:"

681 1


  1. Tracez un carré ABCD.
    2. Étendez le côté CD, E est à 1 cm de D. Dessinez le premier triangle bleu.
    3. Angle droit à E. Le point F est à 2 cm de E. Dessinez le premier triangle rouge.
    4. Angle droit à F. Le point G est à 3 cm de F. Dessinez le deuxième triangle bleu.
    5. Angle droit à G. Le point H est à 4 cm de G. Dessinez le deuxième triangle rouge. La construction est terminé.
    Dans l'image ci-dessus, le carré a une longueur de bord de 4 cm. Quelle est l'aire combinée des deux triangles bleus ? 5 points bleus
    Dans la deuxième image, le carré a une longueur de bord de 8 cm.

681 2


Quelle doit être la longueur du bord du carré ABCD pour que H se trouve sur le prolongement de BA ? 5 points rouges

esp

 "Mirad mis construcciones", dijo Lisa. "Se ve bien. ¿Cómo has hecho las construcciones?", preguntó María. "La construcción es la misma en ambos casos, podéis leerlo aquí".

681 1

  1. Dibuja un cuadrado ABCD.
  2. extender el lado CD, E está a 1 cm de D. Dibuja el primer triángulo azul.
  3. ángulo recto en E. El punto F está a 2 cm de E. Dibuja el primer triángulo rojo. 
  4. ángulo recto en F. El punto G está a 3 cm de F. Dibuja el segundo triángulo azul. 
  5. Ángulo recto en G. El punto H está a 4 cm de G. Dibuja el segundo triángulo rojo. Dibuja el segundo triángulo rojo. La construcción está terminada.

En la imagen anterior, el cuadrado tiene una longitud de arista de 4 cm. ¿Qué tamaño tienen las áreas de ambos triángulos azules juntos? 5 puntos azules.

En la segunda imagen, el cuadrado tiene una longitud de arista de 8 cm.

681 2

¿Cuál debe ser la longitud de las aristas del cuadrado ABCD para que H se encuentre en la prolongación de BA? 5 puntos rojos

en

681 1

“Have a look at my constructions”, Lisa said. “Looks nice. How did you draw it?", Maria asked. “The construction is in both cases the same, here you can check my notes.”

  1. Draw one square ABCD.
  2. Extend side CD, E is 1cm away from D. Draw the first blue triangle.
  3. Right angle at E. Point F is 2 cm away from E. Draw the first red triangle.
  4. Right angle at F. Point G is 3cm away from F. Draw the second blue triangle.
  5. Right angle at G. Point H is 4cm away from G. Draw the second red triangle. The construction is finished.

At the picture on top the square has an edge length of 4cm. How big are the areas of both blue triangles together? 5 blue points

On the second picture the square has an edge length of 8cm.

681 2

How big has the edge length of the square ABCD to be, that H lies on the extension of BA? 5 red points

it

„Guardate le mie costruzioni.“, Lisa diceva. “Che belle! Ma come le hai costruite?”, chiedeva Maria. – “La costruzione è sempre la stessa: eccola!”

681 1

  1. Disegnare un quadrato ABCD.
    2. Prolungare il lato CD, E è1 cm distante da D. Disegnare il primo triangolo blu.
    3. Angolo retto in E. Punto F ha una distanza di 2 cm da E. DIsegnare il primo triangolo rosso.
    4. ngolo retto in F. Punto G è 3 cm distante da F. Disegnare il secondo triangolo blu.
    5. Angolo retto in G. Punto H è 4 cm distante da G. Disegnare il secondo triangolo rosso. Fatta la costruzione.

Nel primo disegno, I lati del quadrato hanno una lunghezza di 4 cm. Qual’è la somma delle aeree dei due triangoli blu? 5 punti blu.
Nel secondo disegno, i lati del quadrato hanno una lunghezza di 8 cm.

681 2

Quale lunghezza deve avere il quadrato per causare che H sia situato sulla prolungazione di BA? 5 punti rossi.

Lösung/solution/soluzione/résultat/Решение:
Eine "rote" Lösung unter Verwendung von Additionstheoremen wurde nicht eingesandt. Wer Muße hat, kann das gerne noch probieren. Hier eine Schöne Übersicht: https://de.wikipedia.org/wiki/Formelsammlung_Trigonometrie

Numerische Lösungen, die die Herleitungen der notwendigen Formel(n) einschloss, ging natürlich auch.
Musterlösung von Reinhold M., danke:
ist a die Kantenlänge des Quadrats, so folgt mit dem Satz des Pythagoras
  AD = a,
  AE = Wurzel(1^2 + a^2) = Wurzel(a^2 + 1),
  AF = Wurzel(2^2 + (Wurzel(1 + a^2))^2) = Wurzel(a^2 + 5),
  AG = Wurzel(3^2 + (Wurzel(5 + a^2))^2) = Wurzel(a^2 + 14),
  AH = Wurzel(4^2 + (Wurzel(14 + a^2))^2) = Wurzel(a^2 + 30).
Der Flächeninhalt AADE des kleinen blauen Dreiecks ist damit
  AADE = 1/2 AD DE = a/2
und der Flächeninhalt AAFG des größeren
  AAFG = 1/2 AF FG = 3/2 Wurzel(a^2 + 5).
Die gesuchte Summe A beider Flächeninhalte ist damit
  A = AADE + AAFG = (a + 3 Wurzel(a^2 + 5))/2,
für a = 4 [cm] also
  A = 2 + 1,5 Wurzel(21)
bzw. ca. 8,8739 cm^2.

Weiter folgt für α = Winkel(DAE), β = Winkel(EAF), γ = Winkel(FAG), δ = Winkel(GAH) mit dem Sinussatz und sin(90°) = 1
  sin(α) = 1 / Wurzel(a^2 + 1),
  sin(β) = 2 / Wurzel(a^2 + 5),
  sin(γ) = 3 / Wurzel(a^2 + 14),
  sin(δ) = 4 / Wurzel(a^2 + 30)
sowie wegen sin^2(x) + cos^2(x) = 1 für beliebige x und mit α, β, γ, δ <= 90°
  cos(α) = a / Wurzel(a^2 + 1),
  cos(β) = Wurzel(a^2 + 1) / Wurzel(a^2 + 5),
  cos(γ) = Wurzel(a^2 + 5) / Wurzel(a^2 + 14),
  cos(δ) = Wurzel(a^2 + 14) / Wurzel(a^2 + 30).
Daraus folgt mit den Additionstheoremen des Sinus
  sin(x+y) = sin(x)cos(y) + cos(x)sin(y)
und des Kosinus
  cos(x+y) = cos(x)cos(y) - sin(x)sin(y)
(hier scheint mir die Verrechenwahrscheinlichkeit geringer zu sein als beim Rechnen mit dem Tangens...)
  sin(α+β) = sin(α)cos(β) + cos(α)sin(β) =  (2 a + Wurzel(a^2 + 1)) / (Wurzel(a^2 + 1) Wurzel(a^2 + 5)),
  cos(α+β) = cos(α)cos(β) - sin(α)sin(β) =  (a Wurzel(a^2 + 1) - 2) / (Wurzel(a^2 + 1) Wurzel(a^2 + 5)),
  sin(γ+δ) = sin(γ)cos(δ) + cos(γ)sin(δ) =  (3 Wurzel(a^2 + 14) + 4 Wurzel(a^2 + 5)) / (Wurzel(a^2 + 14) Wurzel(a^2 + 30)),
  cos(γ+δ) = cos(γ)cos(δ) - sin(γ)sin(δ) =  (Wurzel(a^2 + 14) Wurzel(a^2 + 5) - 12) / (Wurzel(a^2 + 14) Wurzel(a^2 + 30)),
  cos(α+β+γ+δ) = cos(α+β)cos(γ+δ) - sin(α+β)sin(γ+δ)
    =  (a Wurzel(a^2 + 1) Wurzel(a^2 + 14) Wurzel(a^2 + 5) - 2 Wurzel(a^2 + 14) Wurzel(a^2 + 5) - 12 a Wurzel(a^2 + 1) + 24
          - 6 a Wurzel(a^2 + 14) - 8 a Wurzel(a^2 + 5) - 3 Wurzel(a^2 + 1) Wurzel(a^2 + 14) - 4 Wurzel(a^2 + 1) Wurzel(a^2 + 5))
        / (Wurzel(a^2 + 1) Wurzel(a^2 + 5) Wurzel(a^2 + 14) Wurzel(a^2 + 30)).
Die "rote Bedingung" α+β+γ+δ = 90° wird damit genau dann erfüllt, wenn
  f(a) := 24 - 12 a Wurzel(a^2 + 1) - 8 a Wurzel(a^2 + 5) - 6 a Wurzel(a^2 + 14)
            - 4 Wurzel(a^2 + 1) Wurzel(a^2 + 5)) - 3 Wurzel(a^2 + 1) Wurzel(a^2 + 14) - 2 Wurzel(a^2 + 5) Wurzel(a^2 + 14)
            + a Wurzel(a^2 + 1) Wurzel(a^2 + 5) Wurzel(a^2 + 14)
eine Nullstelle hat. Eine Intervallschachtelung (hier direkt aus Excel übernommen) liefert
  f(5) ≈ -91,9681683693112,
  f(6) ≈ 301,201948524827,
  f(5,3) ≈ -6,14679809147611,
  f(5,4) ≈ 28,0620047662183,
  f(5,31) ≈ -2,85778470729457,
  f(5,32) ≈ 0,460192936527648,
  f(5,318) ≈ -0,205725819926542,
  f(5,319) ≈ 0,127088166179661,
  f(5,3186) ≈ -0,00607231526061014,
  f(5,3187) ≈ 0,0272134437802265,
  f(5,31861) ≈ -0,0027438701889082,
  f(5,31862) ≈ 0,000584603956582441,
  f(5,318618) ≈ -0,0000810931984460694,
  f(5,318619) ≈ 0,000251755233605877,
  f(5,3186182) ≈ -0,0000145235351283191,
  f(5,3186183) ≈ 0,0000187613005664389,
  f(5,31861824) ≈ -0,00000120960123695113,
  f(5,31861825) ≈ 0,0000021188823779994,
  f(5,318618243) ≈ -0,00000021105587677539,
  f(5,318618244) ≈ 0,000000121792027130141,
  f(5,3186182436) ≈ -0,0000000113470974838492,
  f(5,3186182437) ≈ 0,0000000219374811649686,
  f(5,31861824363) ≈ -0,00000000136205358103325,
  f(5,31861824364) ≈ 0,00000000196678229258396,
  f(5,318618243634) ≈ -0,0000000000303117531075259,
  f(5,318618243635) ≈ 0,000000000302364355775353,
  f(5,318618243634) ≈ -0,0000000000303117531075259,
  f(5,3186182436341) ≈ 0,00000000000305533376376843,
  f(5,31861824363409) ≈ -0,000000000000682121026329696.
Das Quadrat muss also eine Kantenlänge von ca. 5,3186182436341 cm haben, damit B, A und H auf einer Gerade liegen.

 


Aufgabe 10

682. Wertungsaufgabe

deu

Sommerpause

682
„Ich bin dabei einen Seiltrick vorzubereiten. Hier kannst du meine Vorbereitung sehen. Eine Holzscheibe (Radius = 1m) und ein dünnes rotes Seil. Die Länge des Seils ein Meter länger als der Umfang der Scheibe.“, sagte Mike zu Bernd.

682

Links liegt das Seil gleichmäßig gespannt um die Scheibe herum.
Wie groß ist der Abstand des Seils zum Mittelpunkt der Scheibe? 2 blaue Punkte
Rechts wurde die Scheibe mit dem Seil (im Bild rot) am Haken H hingehängt. Wie groß ist der Abstand des Punktes H zum Mittelpunkt der Scheibe? 6 rote Punkte

Termin der Abgabe 02.9.2021. Срок сдачи 02.09.2021. Ultimo termine di scadenza per l´invio è il 02.09.1921. Deadline for solution is the 2th. September 2021. Date limite pour la solution 02.09.2021. Soluciones hasta el 02.09.2021. Beadási határidő 2021.09.02. 截止日期: 2021.09.02 - 请用徳语或英语回答。

chin

暑假
第682道数学题

"我正准备一个绳子把戏。在这里你能看到我准备的,一个半径为1厘米的木制圆盘和一根细的红绳。
绳子的长度比圆盘的圆周长一米"。迈克对贝恩德说。

682

左图是把绳子均匀拉紧缠绕到圆盘上。请问绳子到圆盘的中心点的距离是多少? 2个蓝点
右图是把缠绕绳子的圆盘用一根红绳挂到钩子H上。
那么点H到圆盘中心点的距离是多少? 6个红点

Termin der Abgabe 02.9.2021. 截止日期: 2021.09.02 - 请用徳语或英语回答。

rus

Летний отпуск

682

«Я готовлю трюк с верёвкой. Здесь вы можете увидеть мою подготовку. Деревянный диск (радиус = 1 м) и тонкая красная верёвка. Длина верёвки на один метр больше, чем окружность диска», - сказал Майк Бернду.

682

Слева верёвка равномерно натянута вокруг диска.

Какое расстояние между верёвкой и центром диска? 2 синих очка
Справа диск с верёвкой (в картинке красная) был подвешен на крючок H. Какое расстояние от точки H до центра диска? 6 красных очков

hun

„Egy kötéltrükköt készítek elő. Itt láthatod az előkészületeket. Ez egy fakorong (r = 1m) és egy vékony piros kötél. A kötél 1 méterrel hosszabb, mint a korong kerülete.” – mondta Mike Berndnek.

682

Balra a kötél egyforma távolságra van a korong körül. Mekkora a távolság a kötéltől a korong középpontjáig.
Jobbra a korongot a piros kötéllel a H pontban lévő kampóra akasztottuk. Mekkora a távolság a H és a korong középpontja között? 6 piros pont

frz

« Je prépare un tour de corde. Ici tu peux voir ma préparation. Un disque en bois (rayon = 1m) et une fine corde rouge. La longueur de la corde est d’un mètre plus long que la circonférence du disque. », a déclaré Mike à Bernd.

682

Sur la gauche, la corde est uniformément tendue autour du disque.
Quelle est la distance entre la corde et le centre du disque ? 2 points bleus
A droite, le disque avec la corde était accroché au crochet H avec la corde rouge. Quelle est la distance du point H au centre du disque ? 6 points rouges

esp

Vacaciones de verano

682

"Estoy preparando un truco de cuerda. Aquí puedes ver mi preparación. Un disco de madera (radio = 1m) y una fina cuerda roja. La longitud de la cuerda es un metro más largo que la circunferencia del disco", le dijo con Mike a Bernd.

682

A la izquierda, la cuerda se extiende uniformemente alrededor del disco.
¿Cuál es la distancia de la cuerda al centro del disco? 2 puntos azules.
A la derecha se colgó el disco con la cuerda en el gancho H con la cuerda roja. ¿Cuál es la distancia del punto H al centro del disco? 6 puntos rojos.

en

„I'm preparing a rope trick. Here you can see my preparations. One wooden disc (radius = 1m) and one thin red rope. The length of the rope is one meter longer than the perimeter of the disc.“, Mike told Bernd.

682

On the left side the rope is evenly taut around the disc.
How big is the distance between the rope an the center of the disc? 2 blue points
On the right side the disc was hanged on the hook H using the red rope. How big is the distance between point H and the center of the disc? 6 red points

it

“Sto preparando un trucco con una corda. Ecco come l’ho preparato: Un tondo di legno (raggio = 1 m) ed una corda rossa sottile.

682

La lunghezza della corda è un metro di più che la circonferenza del tondo.” Mike diceva a Bernd.
A sinistra, la corda è messa equidistante attorno al tondo. Qual’e la distanza della corda dal centro del tondo? 2 punti blu
A destra, il tondo veniva appoggiato con la corda a un gancio che era fissato nel punto H. Qual’è la distanza del punto H dal centro del tondo? 6 punti rossi

Lösung/solution/soluzione/résultat/Решение:

Zu blau: Egal wie groß der Radius auch ist, macht man den Umfang eines Kreises 1 um einen Meter länger, so ist der neue Radius um knapp 16 cm größer.
Zu rot: Hier hat der Radius des Ausgangskreises einen sehr großen Einfluss auf das Ergebnis. Zum Nachlesen: https://mathematikalpha.de/?smd_process_download=1&download_id=21764

Eine Musterlösung zur 682 von Hans, danke. --> pdf <--


Aufgabe 11

683. Wertungsaufgabe

 

deu

683 blau

„Das erinnert mich etwas an Teile von Schachbrettern“, sagte Bernd zu seiner Schwester. „Das stimmt. Allerdings habe ich hier einen Beutel mit sechs roten und sechs blauen Kugeln drin. Ich will nacheinander die Kugeln auf die nummerierten Felder legen. Erste Kugel auf Feld 1, zweite Kugel auf Feld 2 und so weiter. Da bleiben zwar Kugeln im Beutel, aber das ist nicht so schlimm.“ Wie groß ist die Wahrscheinlichkeit, dass die Farbe jedes Feldes des kleinen "Schabretts" mit der Farbe der darauf liegenden Kugel übereinstimmt? 3 blaue Punkte für Berechnung mit dem kleinen „Schachbrett“. 3 rote Punkte für die Berechnung mit dem größeren „Schachbrett“.
683 rot

Termin der Abgabe 09.9.2021. Срок сдачи 09.09.2021. Ultimo termine di scadenza per l´invio è il 09.09.1921. Deadline for solution is the 9th. September 2021. Date limite pour la solution 09.09.2021. Soluciones hasta el 09.09.2021. Beadási határidő 2021.09.09. 截止日期: 2021.09.09 - 请用徳语或英语回答。

chin

第683道数学题

683 blau

„这让我想起了棋盘的一部分“, 贝恩德对他的妹妹说。
„对的。我这有一个袋子,里边有六个红色的球和六个蓝色的球。我要按照取出的顺序把球放到标有数字的地方。
取出的第一个球放在区域1,第二球放在区域2,以此类推。虽然最后袋子里还会有剩余的球,但是没有关系"。

试求数字区域的颜色和球的颜色相同的概率是多少?

(小棋盘是三个蓝点,大棋盘是三个红点)。

683 rot

截止日期: 2021.09.10 - 请用徳语或英语回答

rus

683 blau

«Это немного напоминает мне части шахматной доски», - сказал Бернд своей сестре. «Это верно. Однако у меня есть кошелёк с шестью красными и шестью синими шариками. Я хочу разместить шарики один за другим на пронумерованных полях. Первый шарик на поле 1, второй шарик на поле 2 и так далее. При этом несколько шариков остаются в кошелке, но это не беда.» Какова вероятность того, что цвет каждого поля маленькой «шахматной доски» совпадёт с цветом шарика на нём? 3 синих очка. 3 красных очка для расчёта с большей «шахматной доской».

683 rot

hun

683 blau

„ Ez egy sakktábla részére emlékeztet.” – mondta Bernd a nővérének. „Igy van. Mindenesetre itt van egy zacskó 6 piros és 6 kék golyóval. Egymás után a számozott mezökre szeretném tenni a golyókat. Az első golyót az 1-es, a második golyót a 2-es mezőre és így tovább. Bár marad golyó a zacskóban, de ez nem baj. „
Mekkora a valószínűsége annak, hogy a mezők színe a golyó színével megjegyezzen? 3 kék pont a számításért a kis „sakktáblán”, 3 piros pont a számításért a nagy „sakktáblán”.

683 rot

frz

683 blau

"Cela me rappelle un peu les parties d'échiquiers", a déclaré Bernd à sa sœur. "C'est correct. Cependant, j'ai un sac avec six billes rouges et six billes bleues. Je veux placer les billes les unes après les autres sur les champs numérotés. Première bille sur le champ 1, deuxième bille sur le champ 2 et ainsi de suite. Il y aura des billes qui restent dans le sac, mais ce n'est pas grave. » Quelle est la probabilité que la couleur du champ corresponde à la couleur de la bille ?
3 points bleus pour le calcul en utilisant le petit « échiquier ».
3 points rouges pour le calcul en utilisant le plus grand "échiquier"

683 rot

esp

683 blau

"Esto me recuerda un poco a las partes de los tableros de ajedrez", dijo Bernd a su hermana. "Así es. Sin embargo, tengo aquí una bolsa con seis bolas rojas y seis azules. Quiero poner las bolas en las casillas numeradas una tras otra. La primera bola en la casilla 1, la segunda en la casilla 2 y así sucesivamente. Eso deja bolas en la bolsa, pero no hay problema".
¿Cuál es la probabilidad de que el color del cuadrado coincida con el color de la bola? Se reciben 3 puntos azules para el cálculo con el pequeño "damero". 3 puntos rojos se reciben para el cálculo con el "damero" más grande.

683 rot

en

683 blau

“This reminds me of parts of chessboard”, Bernd told his sister. “That's true. However I've got a bag here, including six red and six blue spheres. I'd like to put those spheres on numbered squares one after another. First sphere on square 1, second sphere on square 2 and so on. There will be some spheres left in the back, but that's all right.” How big will be the probability, that the color of the square matches the sphere's color? 3 blue points for calculating, using the small “chessboard”. 3 red points for calculating, using the big “chessboard”.

683 rot

it

683 blau

„Questo mi rammenta parti di scacchiere”, Bernd diceva a sua sorella. “Vero! Però qui ho un sacchetto che contiene sei sfere rosse e sei sfere blu. Voglio appoggiare le sfere una dopo l’altra sui campi numerati. La prima sul campo 1, la seconda sul campo 2 e così via. Questo faccio prima per la “scacchiera” piccolo, poi, dopo aver rimesso le sfere dentro il sacchetto, per quella grande. E non importa che avanzano delle sfere.

Qual‘è la probabilità per il caso che il colore di ogni campo sia uguale a quello della sfera appoggiata su essa? 3 punti blu per il calcolo riguardo la “schacchiera” piccolo. 3 punti rossi per il calcolo riguardo la “scacchiera” grande.

683 rot

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Maximilian --> pdf <-- und Ingmar Rubin --> pdf <--, danke.


Aufgabe 12

684. Wertungsaufgabe

deu

Dürerbuchstabe
684 b

„Schau mal, ich hab zum Ende der Serie wieder einen Buchstaben nach der Anleitung von Albrecht Dürer konstruiert, na ja nicht ganz, aber fast.“, sagte Bernd zu Mike.
„Das zweite Bild hilft hoffentlich, die Konstruktion gut nachzuvollziehen. Wenn du genau hinschaust, siehst du, dass der untere Bogen des „B“ etwas größer ist als der obere Bogen.“

Zur Konstruktion – bezieht sich auf Bild 2:

684

  1. Quadrat ABCD zeichnen (Kantenlänge a, hier a=10 cm)
  2. AE=EF=FG=GH=a/10. Die Parallelen zu AD zeichnen.
  3. J und K sind Mittelpunkte der Seiten b und d des Quadrats ABCD.
  4. Die kleinen roten Rechtecke haben eine Länge a/10 und eine Breite von a/30.
  5. X liegt auf der Mittelsenkrechten der Strecke ZL.
  6. Die großen Bögen des B werden durch Halbkreise gebildet. Die Durchmesser der Halbkreise sind im Bild erkennbar.
  7. Der kleine Kreis unten innerhalb des B hat den Radius a/30. Die Radien der Kreise ganz links betragen natürlich a/10.

Wie groß sind Umfang und Flächeninhalt der roten Fläche im Bild 2? 5 blaue Punkte.
Wie groß ist der Umfang (nur außen) des B aus dem ersten Bild, beginnend bei Punkt A? 5 rote Punkte

Termin der Abgabe 16.9.2021. Срок сдачи 16.09.2021. Ultimo termine di scadenza per l´invio è il 16.09.1921. Deadline for solution is the 16th. September 2021. Date limite pour la solution 16.09.2021. Soluciones hasta el 16.09.2021. Beadási határidő 2021.09.16. 截止日期: 2021.09.16 – 请用徳语或英语回答。

chin

第684题 杜勒字母

684 b
" 看,我在这个系列最后按照阿尔布雷希特·杜勒的说明构建了一个字母。嗯,不是很完美,但是还可以。" 贝恩德对迈克说。
"希望第二张图能帮助大家更容易理解这个构图。如果你仔细观察,看,这个"B"的下弧度要比上弧度要大一点儿。"

构图过程-请参考图2

684


图2:
1. 画正方形ABCD (边长a, a=10厘米)
2. AE=EF=FG=GH=a/10,同时画出AD的平行线。
3. 点J和K分别是正方形ABCD边b和边d的中点。
4. 图中小的红色矩形,长是a/10,宽为 a/30。
5. X位于直线ZL的垂直中线上。
6. B的大弧都是由半圆组成的。这些半圆的直径在图上是可以看出来的。
7. B下边内部的小圆的半径是 a/30。最左边的圆的半径当然是a/10。

请问:图2中红色区域的周长和面积是多少? 5个蓝点
第一张图中从点A开始的"B"的外围周长是多少? 5个红点

截止日期: 2021.09.16 - 请用徳语或英语回答。

rus

684 Буква Дюрера
«Посмотри, в конце серии я построил ещё одну букву в соответствии с инструкциями Альбрехта Дюрера, ну не совсем, но почти», - сказал Бернд Майку.

684 b

«Надеюсь, второй рисунок поможет тебе разобраться в конструкции. Если ты присмотришь, ты увидишь, что нижняя дуга буквы «B» немного больше верхней дуги».

О конструкции - см. рисунок 2:

684

  1. Нарисовать квадрат ABCD (длина ребра a, здесь a = 10 см).
  2. AE = EF = FG = GH = a / 10. Провести параллели к AD.
  3. J и K - середины сторон b и d квадрата ABCD.
  4. Маленькие красные прямоугольники имеют длину а/10 и ширину а/30.
  5. X лежит на средней вертикали прямой ZL.
  6. Большие дуги буквы B образованы полукругами. Диаметры полукругов можно увидеть на картинке.
  7. Маленький кружок внизу внутри буквы B имеет радиус a/30. Радиусы крайних левых кругов, конечно, равны a/10.

Каковы периметр и площадь красной области на рисунке 2? 5 синих очков.
Каков периметр (только снаружи) буквы B на первом рисунке, начиная с точки A? 5 красных очков

hun

 Dürer-betű

684 b

„Nézd csak, a sorozat végén megint egy betűt szerkesztettem Dürer útmutatója alapján.” – mondta Bernd Mikenak.
„A második kép remélhetőleg segít a szerkesztést jól megérteni. Ha pontosan megfigyeled, a B betű alsó köríve valamivel nagyobb, mint a felső.”
A szerkesztéshez – a második képre vonatkozik:

684

  1. ABCD négyszöget (élhossz a=10 cm)
    2. AE=EF==FG=GH=a/10. Párhuzamosak AD-vel.
    3. J és K az ABCD négyszög b és d oldalénak középpontjai.
    4. A kis piros jobbszög hossza a/10 és szélessége a/30. A körök sugara baloldalon természetesen a/10.
    5. X az ZL szakasz közepén fekszik.
    6. A B nagy köríveit a félkörök képezik. Az félkörök átmérői a képen felismerhetők.
    7. A B-n belüli kis kör sugara a/30. A körök sugara teljesen a baloldalon a/10.
    Mekkora a kerülete és a területe a piros felületnem a 2-es képen? 5 kék pont
    Mekkora a kerülete (csak kívül) a B-nek az első képen, ami az A pontból indul: 5 piros pont

frz

684 Lettre de Dürer
"Regardes, à la fin de la série, j'ai construit une autre lettre selon les instructions d'Albrecht Dürer, enfin pas tout à fait, mais presque", a déclaré Bernd à Mike.

684 b
« J'espère que la deuxième photo t'aideras à comprendre la construction. Si tu regardes de près, tu verras que l'arc inférieur du "B" est légèrement plus grand que l'arc supérieur."
A propos de la construction - se réfère à l'image 2:

684


Image 2 :
1. Tracez un carré ABCD (longueur du bord a, ici a = 10 cm)
2. AE = EF == FG = GH = a/10. Faites des parallèles avec AD.
3. J et K sont les milieux des côtés b et d du carré ABCD.
4. Les petits rectangles rouges mesurent a/10 de long et a/30 de large.
5. X se trouve à mi-verticale de la ligne ZL.
6. Les grands arcs du B sont formés de demi-cercles. Les diamètres des demi-cercles peuvent être vus sur l'image.
7. Le petit cercle en bas à l'intérieur du B a le rayon a/30. Les rayons des cercles à l'extrême gauche sont bien entendu a/10.
Quelle est la taille de la circonférence et de l'aire de la zone rouge de la figure 2 ? 5 points bleus.
Quelle est la circonférence (uniquement à l'extérieur) du B de la première image, à partir du point A ? 5 points rouges

esp

Letra de Dürer 

"Mira, he construido otra carta al final de la serie siguiendo las instrucciones de Albrecht Dürer. Bueno no del todo, pero casi", le dijo Bernd a Mike.

684 b

"Espero que la segunda imagen ayude a seguir bien la construcción. Si te fijas bien, verás que el arco inferior de la "B" es ligeramente mayor que el superior".

Acerca de la construcción - se refiere a la figura 2:

 

684

  1. Dibuja el cuadrado ABCD (longitud de arista a aquí a=10 cm).
  2. AE=EF==FG=GH=a/10. Traza los paralelos con AD.
  3. J y K son los puntos centrales de los lados b y d del cuadrado ABCD.
  4. Los pequeños rectángulos rojos tienen una longitud a/10 y una anchura a/30.
  5. X se encuentra en la mediatriz del segmento rectilíneo ZL.
  6. Los arcos grandes de B están formados por semicírculos. Los diámetros de los semicírculos pueden verse en la imagen.
  7. El pequeño círculo de la parte inferior dentro de la “B” tiene el radio a/30. Los radios de los círculos del extremo izquierdo son, por supuesto, a/10.

¿Cuáles son el perímetro y el área de la zona roja de la figura 2? 5 puntos azules.

¿Cuál es la circunferencia (sólo exterior) de la B de la primera imagen, a partir del punto A? 5 puntos rojos

en

Dürer letter

“Look, for the end of the series I once more did construct a letter following the instructions by Albrecht Dürer, or at least almost following the instructions.”, Bernd told Mike.

684 b

“The second picture hopefully helps to understand the construction. If you have a closer look, you can see, that the lower bow “B” is a little bit bigger than the upper bow.”

The construction you can see in picture 2:

684

  1. Draw square ABCD (edge lenght a, here a=10 cm)
  2. AE=EF==FG=GH=a/10. Draw the parallel lines to AD.
  3. J and K are the midpoints of the sides b and d of square ABCD.
  4. The small red rectangles do have a length a/10 and a with a/30.
  5. X is situated on the perpendicular bisector of line ZL.
  6. The big bows of B are constructed using semi-circles. The diameter of the semi-circles can be recognized on the picture.
  7. The small lower circle inside B does have a radius a/30. The radii of the circles on the left are of course a/10.

How big are perimeter and surface area of the red area in picture 2? 5 blue points.

How big is the perimeter (only on the outside) of B from the first picture, starting at point A? 5 red points

it

Lettera di Dürer

“Guarda, per la fine della serie ho costruito di nuovo una lettera secondo le istruzioni di Dürer, vabbè, non del tutto, ma almeno quasi quasi.”, Bernd diceva a Mike.

684 b

“Spero che il secondo disegno aiuti a capire bene la costruzione. Guardando bene, ti rendi conto che l’arco inferiore della “B” è un po’ più grande dell’arco superiore.”

Ecco la costruzione – riguardo disegno 2:

684

  1. Disegnare il quadrato ABCD (lunghezza dei lati a; in questo caso a = 10 cm)
    2. AE = EF = FG = GH = a/10. Disegnare le parallele di AD.
    3. J e K sono I centri dei lati b e d del quadrato ABCD.
    4. I piccoli rettangoli hanno una lunghezza di a/10 ed una larghezza di a/30.
    5. X è situato sul’ apotema del segment ZL.
    6. Gli archi grandi della B vengono formati di semicerchi. I loro diametri si capiscono dal disegno.
    7. Il piccolo cerchio dentro la B ha un semidiametro di a/30; quelli a sinistra naturalmente di a/10

Quale sono la circonferenza a l’area della superficie rossa del disegno 2? 5 punti blu
Qual’e la circonferenza (solo quella esterna) della B del primo disegno, iniziando nel punto A? 5 punti rossi

Lösung/solution/soluzione/résultat/Решение:

 


Auswertung Serie 57

Die Gewinner des Buchpreises sind: Axel Kästner, Gerhard Palme und Calvin Crafty - herzlichen Glückwunsch.

Auswertung Serie 57 (blaue Liste)

Platz Name Ort Summe Aufgabe
  673 674 675 676 677 678 679 680 681 682 683 684
1. Karlludwig Cottbus 51 6 3 4 4 5 4 5 5 5 2 3 5
1. Reinhold M. Leipzig 51 6 3 4 4 5 4 5 5 5 2 3 5
1. Magdalene Chemnitz 51 6 3 4 4 5 4 5 5 5 2 3 5
1. Maximilian Jena 51 6 3 4 4 5 4 5 5 5 2 3 5
1. Calvin Crafty Wallenhorst 51 6 3 4 4 5 4 5 5 5 2 3 5
1. Paulchen Hunter Heidelberg 51 6 3 4 4 5 4 5 5 5 2 3 5
1. Axel Kästner Chemnitz 51 6 3 4 4 5 4 5 5 5 2 3 5
2. Hans Amstetten 50 6 3 3 4 5 4 5 5 5 2 3 5
2. Hirvi Bremerhaven 50 6 3 4 4 5 4 5 5 5 2 3 4
3. HeLoh Berlin 49 6 3 4 4 4 3 5 5 5 2 3 5
4. Frank R. Leipzig 48 6 3 4 4 5 4 5 5 5 2 - 5
5. Albert A. Plauen 45 6 3 4 4 4 4 5 5 5 2 3 -
5. Gerhard Palme Schwabmünchen 45 - 3 4 4 5 4 5 5 5 2 3 5
6. Janet A. Chemnitz 43 6 3 4 4 - 2 5 5 5 2 3 4
6. Günter S. Hennef 43 6 3 4 4 5 4 5 5 5 2 - -
6. Laura Jane Abai Chemnitz 43 6 3 4 4 - 2 5 5 5 2 3 4
6. Dana Ingolstadt 43 6 3 4 4 5 3 5 5 - - 3 5
7. Linus-Valentin Lohs Chemnitz 41 6 3 4 4 5 4 5 5 - - - 5
8. Roland Lange Dresden 40 6 3 4 4 5 3 5 5 5 - - -
8. Kurt Schmidt Berlin 40 6 3 4 3 4 - - 5 5 2 3 5
8. Birgit Grimmeisen Lahntal 40 6 3 4 4 4 4 5 5 5 - - -
9. Alexander Wolf Aachen 39 6 3 4 4 5 4 5 5 - - 3 -
9. Othmar Z. Weimar (Lahn) 39 6 - 4 4 5 3 5 5 5 2 - -
10. Ingmar Rubin Berlin 38 6 3 - 4 - - 5 5 5 2 3 5
11. Siegfried Herrmann Greiz 33 6 3 4 4 5 - - 5 4 2 - -
12. Gitta Großsteinberg 28 6 2 - 4 5 4 - - 5 2 - -
13. StefanFinke112 Wittstock/Dosse 24 5 3 - 4 5 - - 5 - 2 - -
14. PC Zerbe Erfurt 21 - 3 4 4 5 - - 5 - - - -
15. Lukas Thieme Chemnitz 15 - - - - - - 5 5 5 - - -
16. Helmut Schneider Su-Ro 12 - - 4 - 5 - - - - - 3 -
17. Dorothea Richter Chemnitz 9 6 - - - - - - - - - 3 -
17. Bernd Berlin 9 - - - 4 3 - - - - 2 - -
17. W. Gliwa Magdeburg 9 - - - - - 4 - 5 - - - -
18. Jos Heinemann Ilmenau 8 - - - - - - - - 5 - 3 -
19. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
19. Ina Jahre Zwickau 6 6 - - - - - - - - - - -
19. Felix Helmert Chemnitz 6 6 - - - - - - - - - - -
20. A. Türk Chemnitz 5 - - - - - - 5 - - - - -
20. Luca Hennig Lohne 5 5 - - - - - - - - - - -
20. Marla Seidel Chemnitz 5 - - - - - - - 5 - - - -
21. Daniel Hufenbach Potsdam 4 - - 4 - - - - - - - - -
22. Frank Römer Frankenberg 3 - - - - - - - - - - 3 -
22. Boris Hamburg 3 - - - - - - - - - - 3 -
22. Nico Plümer Chemnitz 3 - - - - - - - - - - 3 -
22. Frida Schwarzenberg Chemnitz 3 - - - - - - - - - - 3 -
23. Ralf Kleinschmidt Frankfurt/Main 2 - - - - - - - - - 2 - -

Auswertung Serie 57 (rote Liste)

Platz Name Ort Summe Aufgabe
  673 674 675 676 677 678 679 680 681 682 683 684
1. Hirvi Bremerhaven 59 6 4 6 4 4 6 5 5 5 6 3 5
1. Maximilian Jena 59 6 4 6 4 4 6 5 5 5 6 3 5
1. Reinhold M. Leipzig 59 6 4 6 4 4 6 5 5 5 6 3 5
1. Karlludwig Cottbus 59 6 4 6 4 4 6 5 5 5 6 3 5
1. Magdalene Chemnitz 59 6 4 6 4 4 6 5 5 5 6 3 5
1. Paulchen Hunter Heidelberg 59 6 4 6 4 4 6 5 5 5 6 3 5
1. Calvin Crafty Wallenhorst 59 6 4 6 4 4 6 5 5 5 6 3 5
2. Hans Amstetten 58 6 3 6 4 4 6 5 5 5 6 3 5
3. Frank R. Leipzig 56 6 4 6 4 4 6 5 5 5 6 - 5
3. HeLoh Berlin 56 6 4 6 4 3 6 5 3 5 6 3 5
4. Gerhard Palme Schwabmünchen 53 - 4 6 4 4 6 5 5 5 6 3 5
5. Axel Kästner Chemnitz 52 6 4 6 4 4 5 5 5 5 - 3 5
6. Günter S. Hennef 51 6 4 6 4 4 6 5 5 5 6 - -
7. Albert A. Plauen 50 6 4 6 4 4 4 5 5 5 4 3 -
8. Dana Ingolstadt 46 6 3 6 4 4 5 5 5 - - 3 5
9. Birgit Grimmeisen Lahntal 45 6 4 6 4 4 6 5 5 5 - - -
10. Roland Lange Dresden 44 6 4 6 4 4 5 5 5 5 - - -
11. Ingmar Rubin Berlin 43 6 4 - 4 - - 5 5 5 6 3 5
11. Othmar Z. Weimar (Lahn) 43 6 - 6 4 4 4 5 5 5 4 - -
11. Alexander Wolf Aachen 43 6 4 6 4 4 6 5 5 - - 3 -
12. Kurt Schmidt Berlin 38 6 4 6 4 - - - 5 - 6 3 4
13. Linus-Valentin Lohs Chemnitz 36 6 2 - 4 4 6 5 5 - - - 4
14. Siegfried Herrmann Greiz 35 6 2 6 4 2 - - 5 4 6 - -
15. Gitta Großsteinberg 32 6 4 - 4 4 6 - - 4 4 - -
16. PC Zerbe Erfurt 17 - 4 - 4 4 - - 5 - - - -
17. Laura Jane Abai Chemnitz 14 6 - - - - - 5 - - - 3 -
17. Lukas Thieme Chemnitz 14 - - - - - - 4 5 5 - - -
17. Janet A. Chemnitz 14 6 - - - - - 5 - - - 3 -
18. StefanFinke112 Wittstock/Dosse 13 6 - - 4 - - - 3 - - - -
19. Helmut Schneider Su-Ro 11 - - 4 - 4 - - - - - 3 -
20. W. Gliwa Magdeburg 8 - - - - - 3 - 5 - - - -
21. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
21. Bernd Berlin 6 - - - 4 2 - - - - - - -
21. Ina Jahre Zwickau 6 6 - - - - - - - - - - -
21. Felix Helmert Chemnitz 6 6 - - - - - - - - - - -
21. J. B. Brockhaus Lohne 6 6 - - - - - - - - - - -
21. Luca Hennig Lohne 6 6 - - - - - - - - - - -
21. Jos Heinemann Ilmenau 6 - - - - - - - - 3 - 3 -
22. Maximilian Schlenkrich Chemnitz 5 - - - - - - - - 5 - - -
22. Marla Seidel Chemnitz 5 - - - - - - - 5 - - - -
22. Daniel Hufenbach Potsdam 5 - - 5 - - - - - - - - -
23. Dorothea Richter Chemnitz 3 - - - - - - - - - - 3 -
23. A. Türk Chemnitz 3 - - - - - - 3 - - - - -
23. Nico Plümer Chemnitz 3 - - - - - - - - - - 3 -
23. Boris Hamburg 3 - - - - - - - - - - 3 -

 

Wochenaufgabe 这周的数学问题

这周的数学问题 - Aufgabe der Woche

exercice de maths de la semaine, math problem of the week, problema di matematica della settimana, सप्ताह के गणित समस्या, математическая задача недели, Ejercicio de matemáticas semanal, 今週の数学問題, בעיה מתמטית של השבוע, مشكلة الرياضيات الأسبوع, 这个周的数学问题, Haftanın matematik problemi, temporäre Problem vun der Woch, μαθηματικό πρόβλημα της εβδομάδας, math tatizo la wiki, 這個週的數學問題,

每个星期五在这个网站上有一道新的数学题。 最晚要在下个星期四之前把数学题的答案发给我们。 数学题分为不同的难度 (蓝色代表更简单,红色代表更难)。 每个完整答案(包括解题思路)可以得到2-12个蓝点或红点。 每个系列包括12道数学题,只有答完12道题后才能知道该系列答题优胜者花落谁家。 答题参与者的点数在这里可以查看。 每个系列有3个奖品(3本书,这些书是由德国Chemnitz 的 Buchdienst Rattei  提供的)。 奖品获得者将从每系列最优秀的10名参与者之中摇奖产生。 如果您有任何问题或建议,欢迎与我们取得联系。

请用徳语或英语回答。

截止日期: 2022.01.20

--> english version <-- --> russisch <-- --> italienisch <-- --> französisch <-- --> spanisch <-- --> ungarisch <-- --> 中文/Chinese <--

 

开启系列59

第699题

 

“你上周做的梦让我又多写了一些斐波那契数字”。丽莎对迈克说。
“这是前25个数字: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711,28657,46368 。
第25个数字是:75025。最后一个数字很有意思,它既是第25个数字,它的尾数也是25。”
除了第一个数字1(5)以外,找出另外一个斐波那契数字,它的排列顺序和它的尾数相同。 3个蓝点。

人们也可以把数列中的斐波那契数字按顺序相加:
1 + 1 = 2, 1 + 1 + 2 = 4; 1 + 1 + 2 + 3 = 7, 1 + 1 + 2 + 3 + 5 = 12, ...
不难看出它的规律。
那么它是什么样子的?怎么去证明? (1 + 4 = 5)个红点

截止日期: 2022.01.20 – 请用徳语或英语回答

 

 _______________________________________________________________________________________

 

每个星期的图形迷题,包括排名榜。

 

您可以-->在这儿答题<--。 表格填写注意事项:请填写全名,以便我们为您统计分数。

如果您想每周自动获得数学题,可以-->在这儿订阅<--我们的每周通讯。

到目前为止,已有2000位人士(或机构)订阅了我们的每周通讯。

 

Adresse:Thomas Jahre
Paul-Jäkel-Straße 60
09113 Chemnitz
Deutschland/Germany
 der QR-Code für diese Seite
Aufgabe der Woche qr

Serie 56

Serie 56

Hier werden die Aufgaben 661 bis 672 veröffentlicht.

Aufgabe 1

661. Wertungsaufgabe

Logikaufgabe

Bernd und seine Freunde Carlo, Daniel, Frieder und Gerd trafen sich nach Weihnachten mal wieder und stellten fest, dass jeder von ihnen eine wertvolle Antiquität bekommen hatte, die sie verkaufen sollten. Sie riefen bei einem Händler an und der meinte, dass die Beurteilung solcher Dinge doch länger dauern könnte und bestellte sie für 10.00 Uhr, 11.00 Uhr, 12.00 Uhr, 13.00 Uhr bzw. 14.00 Uhr einzeln in sein Geschäft. Er notierte sich die Familiennamen: Bunt, Galle, Josch, Olbert und Tief. Zu verkaufen waren eine Zeichnung mit einem Drachen, Filmplakate, Heiligenbilder, ein Klavier und eine uralte Eisenbahn aus Blech. Bernd fasste später für Mike alles zusammen.

  1. Carlo wollte das Klavier loswerden.
  2. Das Bild mit dem Drachen wurde um 14.00 Uhr angeboten, das war nicht Daniel.
  3. Der Junge mit dem Nachnamen Josch war um 12.00 Uhr bestellt.
  4. Frieder war der erste im Laden, direkt anschließend ging es um die Heiligenbilder.
  5. Gerd, er heißt nicht Tief, war direkt im Anschluss nach Bernd Bunt dran dran.
  6. Der Freund mit dem Namen Galle wollte seine Filmplakate verkaufen.

Wer (Name, Vorname) verkaufte um welche Zeit seine Antiquitäten? 6 blaue Punkte

Zeit

Vorname

Name

Antiquität

10.00 Uhr

     

11.00 Uhr

     

12.00 Uhr

     

13.00 Uhr

     

14.00 Uhr

     

„Wo habt ihr euch eigentlich getroffen?“, fragte Mike. „Natürlich in der Gaststätte zum großen Baum. Der liegt ja nicht weit von den Straßen der Gartensiedlung, in denen wir wohnen.“ (Asternweg, Dahlienweg, Johannisbeerenweg, Schneeglöckchenweg und Nelkenweg.) Allerdings sind sie nicht oft dort. Das letzte mal waren es 6, 7, 8, 9 bzw. sogar 10 Wochen her, seit dem letzten Besuch in der Gaststätte. Trotz der langen Zeit war eines wie immer, die Farben ihrer Schals. ( grün, blau, rot, gelb bzw. grau.)

  1. Der Junge aus dem Dahlienweg war vor genau 9 Wochen da gewesen.
  2. Bernd, mit blauem Schal, war eine Woche vor dem Jungen aus dem Asternweg in der Gaststätte gewesen.
  3. Vor genau 8 Wochen war der Junge mit dem grauen Schal in der Gaststätte gewesen. Er wohnte nicht im Johannesbeerenweg.
  4. Vor genau 7 Wochen war nicht der Junge mit dem gelben Schal dort gewesen.
  5. Carlo aus dem Nelkenweg hatte keinen roten Schal.
  6. Der Junge mit dem grünen Schal, er heißt nicht Daniel, wohnt im Schneeglöckchenweg und war 2 Wochen eher als Gerd in der Gaststätte.

Wer wohnt in welcher Straße und wann er in der Gaststätte? Welche Farben haben die Schals? 6 rote Punkte

Vorname

Straße

Farbe

Letzte Anwesenheit

Bernd

     

Carlo

     

Daniel

     

Frieder

     

Gerd

     

Logikrätsel-Vorlage

Termin der Abgabe 21.01.2021. Срок сдачи 21.01.2021. Ultimo termine di scadenza per l´invio è il 21.01.1921. Deadline for solution is the 21th. January 2021. Date limite pour la solution 21.01.2021. Soluciones hasta el 21.01.2021. Beadási határidő 2021.01.21.

rus

Задача логики

Бернд и его друзья Карло, Даниел, Фридер и Герд встретились снова после рождества и установили, что каждый из них получил как подарок драгоценную антикварную вещь, которую следовало бы продать. Они позвонили антиквару, а тот считал, что оценка таких вещей может длиться. Поэтому он пригласил их по одному в 10:00, 11:00, 12:00, 13:00 и соответственно в 14:00 часов в свой магазин. Он записал их фамилии: Бунт, Галле, Ёш, Ольберт и Тиф.
В продаже были рисунок с драконом, афиши кинофильмов, иконы святых, фортепьяно и старинная модельная железная дорога из жести.
Позже Бернд для Майка всё следующим образом сводил:
1. Карло хотел избавиться от фортепьяно.
2. Рисунок с драконом предлагали в 14:00 часов, но это не был Даниел.
3. Парень с фамилией Ёш был приглашён на 12:00 часов.
4. Фридер был первым в магазине, и непосредственно после него очередь была за иконами святых.
5. Герд, его фамилия не Тиф, пришёл непосредственно после Бернда Бунта.
6. Друг с фамилией Галле хотел продать свои афиши кинофильмов.
Кто в какое время продал свою антикварную вещь? 6 синих очков.

Время

Имя

Фамилия

Антикварная вещь

10:00 часов

     

11:00 часов

     

12:00 часов

     

13:00 часов

     

14:00 часов

     

«Где вы вообще встретились?», спросил Майк. «Конечно в ресторане «У большого дерева». Он ведь недалеко от улиц садового поселения, в которых мы живём» (астровый переулок, георгиновый переулок, смородиновый переулок, подснежниковый переулок и гвоздиковый переулок). Однако они не часто бывают там. Последние встречи в этом ресторане были 6, 7, 8, 9 и даже 10 недель тому назад. Несмотря на длительный период времени - одно не изменилось — цвет их шарфов (зелёный, синий, красный, жёлтый и соответственно серый).

  1. Парень из георгинового переулка был там ровно 9 недель тому назад.
    2. Бернд, со синим шарфом, был в ресторане одну неделю раньше парня из астрового переулка.
    3. Ровно 8 недель тому назад парень со серым шарфом был в ресторане. Он не жил в смородиновом переулке.
    4. Ровно 7 недель тому назад парень с жёлтым шарфом не был там.
    5. Карло, парень из гвоздикового переулка, не имел красного шарфа.
    6. Парень с зелёным шарфом, его не зовут Даниел, живёт в подснежниковом переулке и был в ресторане 2 недели раньше Герда.
    Кто живёт на какой улице и когда был в ресторане? Какого цвета их шарфы?
    6 красных очков

Имя

Улица

Цвет

Последний раз в ресторане

Бернд

     

Карло

     

Даниел

     

Фридер

     

Герд

     

возможное предложение для загадки логки

hun

Bernd és a barátai Carlo, Daniel, Frieder és Gerd újból találkoztak karaácsony után és megállapították, hogy mindegyikük kapott egy értékes antik tárgyat, amit el kéne adniuk. Felhívtak egy régisékereskedőt, aki azt mondta, hogy az ilyen tárgyak felbecsülése sok idő, így 10, 11, 12, 13 és 14 órára kaptak időpontot az üzletében. A kereskedő feljegyezte a vezetékneveket: Bunt, Galle, Josch, Olbert és Tief. Eladásra kínáltak egy sárkényos képet, filmplakátot, szentképet, egy zongorát és egy régi fémmozdonyt. Bernd összefoglalta Mikenak az egészet.

  1. Carlo a zongorát akarta eladni.
    2. A sárkányos képet 14 órakor nézték meg, de nem Daniele volt.
    3. A josch vezetéknevű fiú 12 órára kapott időpontot.
    4. Frieder volt az első a boltban, direkt utána a szentkép következett.
    5. Gerd, akit nem Tiefnek hívtak, közvetlenül Bernd Bunt után került sorra.
    6. A Galle nevű cimbora a filmplakátját akarta eladni.
    Ki (teljes név) és mikor árulta melyik régiségét? 6 kék pont

Hol találkoztatok végül? - kérdezte Mike. Természetesen a Nagy fához nevű vendéglőben. Az nincs messze a kertvárosi úthoz, ahol lakunk. (Asternweg, Dahlienweg, Johannisbeerenweg, Schneeglöckchenweg und Nelkenweg.) De nem mindig ott vagyunk. Utoljára 6,7,8,9 sőt 10 hete, hogy utoljára ott jártunk. A hoszzú idő ellenére egy mint mindig ugyanaz, a sáljuk színe (zöld, kék, piros, sárga és szürke).
1. A fiú a Dahlienweg-ről pontosan 9 hete járt ott.
2.Bernd, kék sállal, egy héttel azelőtt volt az étteremben, mint a srác az Asternweg-ről.
3. Pont 8 hete volt a szürke sálas fiú a vendéglőben.
4. 7 hete nem a sárga sálas fiú volt ott.
5. Carlonak a Nelkenweg-ről nincs piros sálja.
6. A zöld sálas fiú, akit nem Danielnek hivnak, a Schneeglöckhenweg-en lakik és 2 héttel korábban volt az étteremben, mint Gerd.
Ki melyik utcában lakik és mikor járt a vendéglőben? Kinek mielyn színű sálja van? 6 piros pont

fr

Exercise de logique

Bernd et ses amis Carlo, Daniel, Frieder et Gerd se sont de nouveau rencontrés après Noël et ont découvert que chacun d'eux avait une précieuse antiquité à vendre. Ils ont appelé un revendeur et il a dit que l'évaluation de telles choses pourrait prendre plus de temps et les a commandées individuellement dans son magasin à 10h00, 11h00, 12h00, 13h00 et 14h00. Il a noté les noms de famille: Bunt, Galle, Josch, Olbert et Tief. À vendre, un dessin avec un dragon, des affiches de cinéma, des images de saints, un piano et un train en étain. Bernd a résumé plus tard tout pour Mike.

  1. Carlo voulait se débarrasser du piano.
  2. La photo avec le dragon a été offerte à 14h00, ce n'était pas Daniel.
  3. Le garçon portant le nom de famille Josch a été reçu à midi.
  4. Frieder était le premier dans le magasin, après, il s'agissait des images saintes.
  5. Gerd, son nom n'est pas Tief, était immédiatement après Bernd Bunt.
  6. L'ami nommé Galle voulait vendre ses affiches de cinéma.

Qui (nom, prénom) a vendu ses antiquités et à quelle heure? 6 points bleus

Heure

Prénom

Nom

Antiquité

10h00

     

11h00

     

12h00

     

13h00

     

14h00

     

"Où vous êtes-vous rencontrés?", a demandé Mike. «Dans le restaurant au grand arbre, bien sûr. Ce n'est pas loin de la colonie de jardin dans laquelle nous vivons. » (Asternweg, Dahlienweg, Johannisbeerenweg, Schneeglöckchenweg et Nelkenweg.) Cependant, ils ne sont pas souvent là. La dernière fois, c'était il y a 6, 7, 8, 9 ou même 10 semaines, depuis la dernière visite au restaurant. Malgré le temps, une chose était comme toujours pareil, les couleurs des foulards. (vert, bleu, rouge, jaune ou gris.)

  1. Le garçon du Dahlienweg était là il y a exactement 9 semaines.
  2. Bernd, avec un foulard bleu, était allé au restaurant une semaine avant le garçon d'Asternweg.
  3. Il y a exactement 8 semaines, le garçon au foulard gris était allé au restaurant. Il n'habitait pas sur Johannesbeerenweg.
  4. Il y a exactement 7 semaines, le garçon au foulard jaune n'était pas là.
  5. Carlo de Nelkenweg n'avait pas de foulard rouge.
  6. Le garçon au foulard vert, il ne s'appelle pas Daniel, vit sur Schneeglöckchenweg et était 2 semaines plus tôt que Gerd au restaurant.

Qui habite dans quelle rue et quand est-il allé au restaurant? Quelles sont les couleurs des foulards? 6 points rouges

Prénom

Rue

Couleur

Dernière visite

Bernd

     

Carlo

     

Daniel

     

Frieder

     

Gerd

     
 

esp

Problema de lógica

Bernd y sus amigos Carlo, Daniel, Frieder y Gerd se encontraron después de Navidad y se dieron cuenta de que habían recibido antigüedades preciosas que valían la pena vender. Llamaron a un vendedor que les advirtió que el dictamen de estas cosas puede tardar y les citó para las 10.00, 11.00, 12.00, 13.00 y 14.00 uno por uno en su tienda. Les apuntó con sus apellidos: Bunt, Galle, Josch, Olbert y Tief. Las antigüedades eran: un cuadro con un dragón, carteles de películas, imágenes de santos, un pianoforte y un ferrocarril viejo de chapa de metal. Más tarde, Bernd resumió todo para Mike.
1. Carlo quería vender el piano.
2. La imagen con el dragón se examinó a las 14.00, pero no era Daniel.
3. El hombre con el apellido Josch estaba citado a las 12.00.
4. Frieder era el primero en la tienda y en la cita después se examinaron los santos.
5. Gerd, que no tiene el apellido Tief, estaba citado directamente después de Bernd Bunt.
6. El amigo con el apellido Galle quería vender los cárteles de películas.
¿Quién (nombre, apellido) vendió sus antigüedades en qué hora? 6 puntos azules.

hora

nombre

apellido

antigüedad

10.00

     

11.00

     

12.00

     

13.00

     

14.00

     

“¿Dónde os habéis encontrado?”, preguntó Mike. “En el restaurante del gran árbol, por supesto. Está muy cerca de las calles del polígono residencial en las que vivimos.” Las calles en las que vivimos se llaman Asternweg Dahlienweg, Johannisbeerenweg, Schneeglöckchenweg y Nelkenweg. Pero en realidad, no se quedan en el restaurante con frecuencia. La última vez hace 6, 7, 8, 9 o bien 10 semanas. A pesar de los largos tiempos de no visitar al restaurante, una cosa siempre había sido igual: los colores de sus bufandas (verde, azul, rojo, amarillo y gris). 

  1. El hombre del Dahlienweg estaba allí hace exactamente 9 semanas.
    2. Bernd, con su bufanda azul, estaba en el restaurante una semana antes que el hombre del Asternweg.
    3. Hace 8 semanas, el hombre con la bufanda gris estaba en el restaurante. Él no vivía en Johannisbeerenweg.
    4. Hace 7 semanas no estaba allí el hombre con la bufanda amarilla.
    5. Carlo del Nelkenweg no tiene la bufanda roja.
    6. El hombre con la bufanda verde no se llama Daniel, vive en Schneeglöckchenweg y estaba en el restaurante dos semanas antes que Gerd. ¿Quién vive en qué calle y cuándo estaba en el restaurante?
    ¿Cuáles colores tienen las bufandas? 6 puntos rojos.

nombre

calle

color

última presencia

Bernd

     

Carlo

     

Daniel

     

Frieder

     

Gerd

     

en

logical task

Bernd and his friends Carlo, Daniel, Frieder and Gerd met again after Christmas and realized that every one of them got a valuable antiquity, which they wanted to sell. They phoned a merchant and he told them that a examination of such things could last quite long. He set an appointment with them at 10 am, 11 am, 12 am, 1 pm resp. 2pm where they should come to his store, one after another. He noted their sure names: Bunt, Galle, Josch, Olbert and Tief. They were selling a drawing with a dragon, movie posters, images of saints, a piano and a very old toy train made of tin. Bernd summarized everything for Mike later.

  1. Carlo wanted sell the piano.
  2. The picture with the dragon was offered at 2 pm, this wasn’t Daniel.
  3. The boy with the sure name Josh had an appointment at 12 am.
  4. Frieder was the first in the store, directly after him they talked about the images of saints.
  5. Gerds, whose sure name isn‘t Tief, came directly after Bernd Bunt.
  6. The friend with the sure name Galle wanted to sell his movie posters.

Who (sure name, first name) sold his antiquities at which time? 6 blue points

time

first name

sure name

antiquity

10 am

     

11 am

     

12 am

     

1 pm

     

2 pm

     

„Where did you meet anyway?“, asked Mike. „Obviously in the restaurant of the big tree. It isn’t far away from the streets of the allotment-garden area in which we lived.“ (Asternweg, Dahlienweg, Johannisbeerenweg, Schneeglöckchenweg and Nelkenweg.) However they didn’t go there very often. The last time it was 6, 7, 8, 9 resp. even 10 weeks ago, since the last visit in the restaurant. Despite the long time, one thing was always the same, the color of their scarfs. ( green, blue, red, yellow resp. grey.)

  1. The boy from Dahlienweg was there exactly 9 weeks ago.
  2. Bernd, wearing a blue scarf, was in the restaurant one week before the boy from Asternweg.
  3. Just 8 weeks ago a boy wearing a grey scarf was in the restaurant. He lives in Johannesbeerenweg.
  4. Just 7 weeks ago the boy wearing the yellow scarf wasn’t there.
  5. Carlo from Nelkenweg had no a red scarf.
  6. The boy with the green scarf, his name is not Daniel, lives in Schneeglöckchenweg and was in the restaurant two weeks before Gerd.

Who lives in which street and visited the restaurant at which time? Which colours do the scarfs have? 6 red points

first name

street

colour

last attendance

Bernd

     

Carlo

     

Daniel

     

Frieder

     

Gerd

     

it

Compito di logica

Bernd ed i suoi amici Carlo, Daniel, Frieder e Gerd si incontravano dopo natale e si rendevano conto che ognuno di loro aveva ricevuto un’ antichità preziosa per vendere. Chiamavano un venditore e quello gli spiegava che durerebbe un po’ per valutare queste cose. Quindi faceva appuntamenti con ognuno separatamente per le 10.00, le 11.00, le 12.00, le 13.00 e le 14.00. Si notava I cognomi: Bunt, Galle, Josch, Olbert e Tief. Le cose da vendere erano un disegno che mostrava un drago, cartelli di cinema, immagini sacre, un pianoforte e una ferrovia secolare, fatto di latta. Bernd raccontava a Mike:

  1. Carlo voleva liberarsi del pianoforte.
    2. Il disegno che mostrava un drago era offerto alle 14.00, ma non da Daniel.
    3. Il ragazzo col cognome Josch aveva appuntamento alle 12.00
    4. Frieder era il primo nel negozio, direttamente dopo lui si valutavano le immagini sacre.
    5. Gerd (che non si chiama Tief), aveva appuntamento subito dopo Bern Bunt.
    6. L’amico del cognome Galle voleva vendere I suoi cartelli di cinema.

Chi (Nome, Cognome) vendeva a quale ora quale antichità? – 6 punti blu

Orario

Nome

Cognome

Antichità

10.00

     

11.00

     

12.00

     

13.00

     

14.00

     

“Ma dove vi siete incontrati?“, Mike chiedeva. „Naturalmente nel ristorante All‘albero grande che sta vicino alle strade dell’ abitato dove abitiamo tutt’e cinque.” (Via Aster, Via Dalia, Via Ribes, Via Bucaneve e Via Garofano). Era però tanto che i cinque non erano più stati in questo ristorante. Erano passate 6, 7, 8, 9 e infatto 10 settimane dalla loro ultima visita. Non si aveva però cambiato il colore delle loro sciarpe (verde, blu, rosso, giallo e grigio).

  1. Il ragazzo della Via Dalia c’era stato 9 settimane fa.
    2. Bernd, colla sciarpa blu, aveva cenato al ristorante esattamente una settimana prima del ragazzo che abita in Via Aster.
    3. 8 settimane fa, il ragazzo colla sciarpa grigia era al ristorante. Non abita in Via Ribes.
    4. 7 settimane fa, non era il ragazzo colla sciarpa gialla che cenava al ristorante.
    5. Carlo di Via Garofano non aveva la sciarpa rossa.
    6. Il ragazzo colla sciarpa verde (non si chiama Daniel) abita in Via Bucaneve ed era al ristorante due settimane prima di Gerd.

Chi abita in quale strada e quando era stato per l‘ultima volta al ristorante? Qual’erano I colori delle loro sciarpe? – 6 punti rossi

Nome

Strada

Colore

Ultima visita

Bernd

     

Carlo

     

Daniel

     

Frieder

     

Gerd

     

 

Lösung/solution/soluzione/résultat/Решение:

 Musterlösung von Alexander --> blau <-- und r--> rot <--, danke


Aufgabe 2

Wertungsaufgabe 662

 

662 blau 662 rot

„In den beiden Quadraten kannst du die Zahlen 3, 4 und 5 lesen. Das sind Angaben in cm“, sagte Maria zu ihrem Bruder.
Wie groß sind die Flächeninhalte der vier Dreiecke in dem blauen Quadrat? - 8 blaue Punkte Wie groß sind die Flächeninhalte der vier Dreiecke in dem roten Quadrat? - 8 rote Punkte
Termin der Abgabe 28.01.2021. Срок сдачи 28.01.2021. Ultimo termine di scadenza per l´invio è il 28.01.1921. Deadline for solution is the 28th. January 2021. Date limite pour la solution 28.01.2021. Soluciones hasta el 28.01.2021. Beadási határidő 2021.01.28.

rus

662 blau 662 rot

«В обеих квадратах ты можешь увидеть числа 3, 4 и 5. Это указания в сантиметрах», сказала Мария своему брату.
Какая величина у площадей четырёх треугольников в синем квадрате? - 8 синих очков.
Какая величина у площадей четырёх треугольников в красном квадрате? - 8 красных очков.

hun

662 blau 662 rot

Mindkét négyzetben láthatod a 3, 4 és 5-ös számot. Ezek adatok centiméterben. - mondta Mária a bátyjának.
Mekkora a területe a négy háromszögnek a kék négyzetben? 8 kék pont
Mekkora a területe a négy háromszögnek a piros négyzetben? 8 piros pont

fr

662 blau 662 rot

«Tu peux lire les nombres 3, 4 et 5 dans les deux carrés. Ce sont des mesures en cm », a déclaré Maria à son frère.
Quelle est l'aire des quatre triangles dans le carré bleu? - 8 points bleus
Quelles sont les aires des quatre triangles dans le carré rouge? - 8 points rouges

esp

662 blau 662 rot

“En los dos cuadrados puedes leer los números 3, 4 y 5. Son datos en cm”, le dijo María a su hermano.
¿Cuánto miden las áreas de los cuatro triángulos en el cuadrado azul? – 8 puntos azules.
¿Cuánto miden las áreas de los cuatro triángulos en el cuadrado rojo? – 8 puntos rojos.

en

662 blau 662 rot

„In the both squares you can read the numbers 3, 4 and 5. The data is shown in cm“, Maria told her brother.
How big are the areas of the four triangles inside the blue square? - 8 blue points
How big are the areas of the four triangles inside the red square? - 8 red points

it

662 blau 662 rot

“Dentro I due quadrati puoi leggere i numeri 3,4 e 5. Questi sono dati in cm.”, Maria diceva a suo fratello.
Quale sono le aeree dei quattro triangoli che si trovabo dentro il quadrato blu? – 8 punti blu
Quale sono le aeree dei quattro quadratic he si trovano dentro il quadrato rosso? – 8 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

Musterlösungen von Bertram --> pdf <-- und Paulchen --> pdf <--, danke


Aufgabe 3

Wertungsaufgabe 663

 

663

„Schau dieses Bild habe ich mit meiner Schablone für Parabeln der Art y = f(x) = x² gezeichnet.“, sagte Maria zu Bernd. „Für die „rote“ Parabel kann ich dir sofort die Funktionsgleichung aufschreiben und auch die Länge dieser Parabel von A über S0 bis B kann ich dir sagen.

Da gibt es diese Formel: https://www.schulmodell.eu/unterricht/84-unterrichtsfaecher/mathematik-unterricht/mathematik-themen/mathelexikon/2930-länge-eines-parabelbogens.html .“, sagte Bernd. 4 blaue Punkte.
Wie lautet eine Funktionsgleichung für die blaue Kurve? Wie groß ist der Flächeninhalt der Flächen AP1S1 und S1P2B zusammen gerechnet, die von der blauen Kurve und der x-Achse begrenzt werden? Mit Herleitung – 6 rote Punkte

Termin der Abgabe 04.02.2021. Срок сдачи 04.02.2021. Ultimo termine di scadenza per l´invio è il 04.2.1921. Deadline for solution is the 4th. February 2021. Date limite pour la solution 04.02.2021. Soluciones hasta el 04.02.2021. Beadási határidő 2021.02.04.

rus

663

«Смотри, этот рисунок я нарисовала своим шаблоном для парабол вида y = fx) = x²», сказала Мария Бернду.
«Для «красной» параболы я могу тебе сразу написать уравнение функции и также длину этой параболы с точки А через S0 до B могу тебе сказать. Эта формула имеется здесь: https://www.schulmodell.eu/unterricht/84-unterrichtsfaecher/mathematik-unterricht/mathematik-themen/mathelexikon/2930-länge-eines-parabelbogens.html .», сказал Бернд. 4 синих очка
Как гласит уравнение функции для синей кривой? Какова величина площади для площадей AP1S1 и S1P2B вместе взятых, которые ограничены синей кривой и осью абсцисс?
С выводом — 6 красных очков

ung

663

Nézd csak, ezt a képet a parabolákhoz való sablonommal készítettem, ahol y = fx) = x². – mondta Mária Berndnek. A piros parabolának az egyenletét azonnal fel tudom neked írni a hosszát ennek a parabolának a-ból az S0-on át megmondani. Itt van ez a képlet: https://www.schulmodell.eu/unterricht/84-unterrichtsfaecher/mathematik-unterricht/mathematik-themen/mathelexikon/2930-länge-eines-parabelbogens.html". -mondta Bernd. 4 kék pont
Add meg az egyenletét a kék görbének. Mekkora A területe az AP1S1 és S1P2B-nek együtt számolva, amiket a kék görbe és az X-tengely határol? Levezetéssel 6 piros pont

fr

663

663

"Regardes, j'ai dessiné cette image avec mon gabarit pour les paraboles du type y = fx) = x² ..", dit Maria à Bernd. «Pour la parabole "rouge", je peux immédiatement t'écrire l'équation fonctionnelle et je peux aussi te dire la longueur de cette parabole de A sur S0 jusqu'à B.
Il existe cette formule:

https://www.schulmodell.eu/unterricht/84-unterrichtsfaecher/mathematik-unterricht/mathematik-themen/mathelexikon/2930-länge-eines-parabelbogens.html .», a déclaré Bernd. 4 points bleus.
Quelle est l'équation fonctionnelle pour la courbe bleue? Quelle est la superficie des zones AP1S1 et S1P2B, qui sont délimitées par la courbe bleue et l'axe x? Avec dérivation - 6 points rouges

esp

663

“Mira, este imagen lo he creado con mi plantilla para parábolas de la forma y = fx) = x²“, le dijo María a Bernd. „Para la parábola roja te puedo indicar la ecuación funciónal y también la longitud de la parábola de a sobre S0 hasta B. Hay una fórmula en https://www.schulmodell.eu/unterricht/84-unterrichtsfaecher/mathematik-unterricht/mathematik-themen/mathelexikon/2930-l%C3%A4nge-eines-parabelbogens.html“, dijo Bernd. 4 puntos azules.
¿Cómo se llama la ecuación funcional para la curva azul? ¿De qué tamaño en el área de los planos AP1S1 y S1P2B, que se limitan por la curva azul y el eje de abscisas, en total? Para el resultado con derivación se reciben 6 puntos rojos.

en

663

“Look, this picture I have drawn with my parabola stencil in the style of y = fx) = x²”, Maria told Bernd. “For the ‘red’ parabola I can directly write you down the functional equation. The length of this parabola from a over S0 until B I can tell you too.

There is this formula: https://www.schulmodell.eu/unterricht/84-unterrichtsfaecher/mathematik-unterricht/mathematik-themen/mathelexikon/2930-länge-eines-parabelbogens.html .”,said Bernd. 4 blue points.

What is the functional equation of the blue curve? How big is the area of AP1S1 and S1P2B summed up, which gets bordered by the blue curve and the x-axis? With derivation – 6 red points

it

663

„Guarda, questo disegno ho fatto con la sagoma per parabole del tipo y = f(x) = x2.”, Maria diceva a Bernd. “Per la parabola ‘rossa’, ti posso subito scrivere l’equazione di funzione e ti posso anche dire la lunghezza di questa parabola, andando da A via S0 a B. Esiste questa formula:  https://www.schulmodell.eu/unterricht/84-unterrichtsfaecher/mathematik-unterricht/mathematik-themen/mathelexikon/2930-l%C3%A4nge-eines-parabelbogens.html “, diceva Bernd. – 4 punti blu
Qual’è l’equazione di funzione per la curva blu? Qual’è la somma delle aeree die campi AP1S1 e S1P2B che sono limitate dall’asse x? Con derivazione – 6 punti rossi

Lösung/solution/soluzione/résultat/Решение:

Musterlösungen von calvin --> pdf <-- und Heloh --> pdf <--, danke. Die zweite Lösung (rot) nimmt knapp Bezug auf Archimedes, der den Flächeninhalt von Parabeln schon ermitteln konnte.


Aufgabe 4

Wertungsaufgabe 664

 

664 Apfelsinenaufgabe
„In den letzten Jahren gab es immer eine Aufgabe, die mit frisch gepflückten Apfelsinen auch gelöst werden konnte. In diesem Jahr wohl eher nicht.“, sagte Mike. „Das wäre sehr schade, aber eine solche Aufgabenstellung machen wir einfach trotzdem.“, erwiderte Lisa.
Mit den Apfelsinen (alle r= 5 cm) lässt sich folgende Figur legen. Damit man es besser sieht, sind die Apfelsinen „eingefärbt“.

664 blau

Start: gelb, erster Rand grün, zweiter Rand blau, der nächste Rand soll wieder grün, anschließend wieder blau sein und so weiter. Wie viele Apfelsinen braucht man insgesamt, wenn man 6 Ränder erreichen möchte? 4 blaue Punkte
Man kann diese schönen Apfelsinen auch als vierseitige Pyramiden stapeln.
Oben ist eine Apfelsine, darunter sind 4, darunter sind 9 und so weiter. Bernd hat sich überlegt, ob es wohl eine große Figur wie bei Aufgabe blau gibt, aus deren Apfelsinen sich eine solche Pyramide stapeln ließe. Ganz genau hat er es nicht geschafft, eine Apfelsine blieb nach dem Stapeln übrig. Wie viele Schichten hat dann eine solche fast perfekte Pyramide mindestens? 4 rote Punkte

Termin der Abgabe 25.02.2021. Срок сдачи 25.02.2021. Ultimo termine di scadenza per l´invio è il 25.2.1921. Deadline for solution is the 25th. February 2021. Date limite pour la solution 25.02.2021. Soluciones hasta el 25.02.2021. Beadási határidő 2021.02.25.

rus

664 Апельсиновая задача
«В последних годах всегда была задача, которую можно было решить с помощью свежесобранных апельсинов. В этом году наверно нет.», сказал Майк. «Это было бы очень жаль, но мы всё-таки просто сделаем такую задачу», ответила Лиза.
Из апельсинов (у всех r = 5 см) можно разместить изображённую рядом фигуру. Чтобы лучше видно было, апельсины «раскрашены».

664 blau

Старт: жёлтый, первый край зелёный, второй край синий, следующий край снова зелёный, последующий снова синий и так далее. Сколько апельсинов в сумме тебе нужны для шести краёв? 4 синих очка
Также можно сложить эти прекрасные апельсины в виде четырёхсторонних пирамид. Наверху один апельсин, под этим четыре, под этими девять и так далее. Бернд обдумал, существует ли большая фигура как у синей залачи, из апельсинов которой можно сложить такую пирамиду? Совершенно точно это ему не удалось, один единственный апельсин остался после сложения. (значит почти совершенно).
Сколько слоёв имеет такая пирамида как минимум? 4 красных очка

ung
Az utóbbi években mindig volt egy feladat, amit frissen szedett narancsokkal lehetett megoldani. Ebben az évben sajnos inkább nem. – mondta Mike.
Ez nagy kár lenne, de egy ilyen feladványt ennek ellenére készítünk. – válaszolt Lisa.
A narancsokból (mindnek r= 5 cm) a következő formát rakjuk ki. Hogy jobban látszódjon, a narancsokat beszíneztük.

664 blau

Indulás: sárga, közvetlen az első sorban zöld, másodikban kék, a következő kör ismét zöld, azután megint kék és így tovább. Mennyi narancsra van szükségünk, ha 6 sort szeretnénk elérni? 4 kék pont
Ezeket a narancsokat négyoldalú piramisformába is rakhatjuk. Fent van egy narancs, alatta 9 és így tovább. Bernd azon gondolkodik, hogy vajon lehetséges-e egy ilyen nagy forma, mint a kék feladatban, amiből egy ilyen piramist lehet építeni. Egészen pontosan nem sikerült neki, egy narancs kimaradt az egymásra rakás végén (tehát majdnem tökéletes). Legalább hány rétege van egy ilyen majdnem tökéletes piramisnak? 4 piros pont

frz

664 Exercice des oranges
«Ces dernières années, il y a toujours eu un exercice qui pouvait être résolue avec des oranges fraîchement cueillies. Probablement pas cette année », a déclaré Mike. "Ce serait dommage, mais nous proposons un telle exercice quand même.", répondit Lisa.
La figure suivante peut être réalisée avec les oranges (chaque r = 5 cm). Les oranges sont «colorées» pour qu'on puisse mieux les voir.

664 blau

Début : jaune, premier bord vert, deuxième bord bleu, le bord suivant doit être à nouveau vert, puis à nouveau bleu et ainsi de suite. De combien d'oranges avez-vous besoin au total si vous souhaitez obtenir 6 bords? 4 points bleus
Vous pouvez également empiler ces belles oranges sous forme de pyramides à quatre côtés.
Au-dessus se trouve un orange, en dessous 4, en dessous 9 et ainsi de suite. Bernd se demanda s'il y avait une grande figure comme dans l'exercice bleue, à partir de laquelle une telle pyramide pourrait être empilée. Il n'a pas tout à fait réussi, il restait un orange appart. (Presque parfait alors). Combien de couches une pyramide aussi presque parfaite a-t-elle au moins? 4 points rouges

esp

“En los últimos años siempre había un problema que se podía resolver con naranjas recolectados frescamente. Pero este desgraciadamente, año no lo habrá”, dijo Mike. “¡Qué lastima sería esto! Pero mira entonces, lo hacemos nosotros mismos”, replicó Lisa. Con las naranjas (cada una de r=5cm) se puede poner la siguiente figura. Para verlo mejor, las naranjas están teñidos. 

664 blau

El punto de partida es la naranja amarilla. Se allí, el primer borde es verde y el segundo azul. El próximo (imaginario) debe ser verde y el siguiente azul otra vez y así sucesivamente. ¿Cuántas naranjas se necesita en total para conseguir 6 bordes? 4 puntos azules.
También, se puede amontonar estas naranjas bellas como pirámide cuadrilátera. Arriba está una naranja, debajo 4, más abajo 9 etcétera. Bernd se ha preguntado si existe una figura grande como la de la tarea azul de la que se puede amontonar una semejante pirámide. Pero no lo ha alcanzado perfectamente, porque lo sobró una naranja después del amontonamiento. ¿Cuántas capas al menos tiene una tal pirámide casi perfecta? 4 puntos rojos.

en

orange task
“ In the last years there always has been a task which could be solved using fresh harvested oranges. This years it probably won’t be the case.”, Mike said. “This would be a pity, but we will do such a task anyway.”, answered Lisa.
Using the oranges (all r= 5 cm) you can lay the following figure. So that you can recognize them better, the oranges got “colored”.

664 blau

Start: yellow, first surrounding green second surrounding blue, the next surrounding should be green again, the following one blue and so on. How many oranges do you need all together, if you want to have six surroundings? 4 blue points
You can either stack these wonderful oranges like a four sided pyramid.
On top is one orange, below are 4, below them are 9 and so on. Bernd thought if there was a tall figure like in task blue, from which you could stack such a pyramid? He couldn’t really figure it out, one orange was always left over, after stacking them. (nearly perfect though). How many layers does such a nearly perfect pyramid at least have? 4 red points

it

664 Compito di arance
“Negli anni passati, c’era sempre un compito che si poteva anche solvere con delle arance appena raccolte. A quest’ann però non sarà possible.”, Mike diceva. “Sarebbe però un grande peccato; ma dai, facciamo ugualmente un tale compito.”, Lisa replicava.
Con le arance (sempre con r = 5 cm) si può formare la figura seguente. E per capirla meglio, le arance sono state colorate.

664 blau

Inizio: giallo, primo bordo: verde, secondo bordo: blu. Il prossimo bordo dev’essere di nuovo verde, poi blu e così via. Quante arance occorrono per raggiungere 6 bordi? – 4 punti blu
Queste arance belle si possono però anche impilare per formare una piramide.
In alto c’è un’ arancia, sotto quella 4, di nuovo sotto quelle 9 e così via. Bernd ha pensato su se esiste una figura come nel compito blu, delle quale arance si potrebbe impilare una tale piramide. Non è riuscito però del tutto: dopo l’impilare gli è rimasto un’ arancia (diciamo allora quasi perfetto). Quanti piani ha una tale piramide quasi perfetta al minimo? – 4 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

Bilder zur blauen Aufgabe:

664-1
664-2
664-3
664-4
664-5
664-6
1/6 
start stop bwd fwd

Eine Musterlösung von Hans, danke. --> pdf <--


Aufgabe 5

Wertungsaufgabe 665

665
„Ich habe dieses Rechteck ABCD (a =7 cm, b = 8 cm) gezeichnet. Dann habe ich die Mittelpunkte der Seiten konstruiert und das kleine Viereck EFGH erhalten. Von diesem habe ich Umfang und Flächeninhalt berechnet.“, sagte Maria zu Bernd. Wie groß sind der prozentuale Anteil von Umfang und Flächeninhalt des kleinen Vierecks im Vergleich zum großen Rechteck? Ist das kleine Viereck auch ein Rechteck? (3+3+2 = 8 blaue Punkte)
Die schwarze Linie durch D bildet mit der Seite c einen Winkel von 45°. Die Punkte A, C und D bleiben fest. Der Punkt B kommt auf die schwarze Linie. Das Viereck EFGH wird wieder wie am Anfang konstruiert.. Ist es möglich, den Punkt B so auf der schwarzen Linie zu verschieben, dass der Flächeninhalt und der Umfang von EFGH halb so groß sind wie der Flächeninhalt und der Umfang von ABCD? 8 rote Punkte

Termin der Abgabe 04.03.2021. Срок сдачи 04.03.2021. Ultimo termine di scadenza per l´invio è il 04.03.1921. Deadline for solution is the 4th. March 2021. Date limite pour la solution 04.03.2021. Soluciones hasta el 04.03.2021. Beadási határidő 2021.03.04. 截止日期: 2021.03.04

chin

第665号数学题

665

玛丽雅跟贝恩德说:" 我画了个矩形ABCD, (a=7厘米, b=8厘米)。 然后把每条边的中点连接起来,得到一个小的四边形EFGH。它的周长和面积我已经计算出来了。"

小四边形和大矩形相比,它的周长和面积占大矩形的百分比是多少?小四边形也是矩形吗?(3+3+2 = 8个蓝点)

过D点的黑色直线和c边形成的夹角是45度。 A、C 和D三点保持不变。
如果B点在黑线上移动,形成一个(新的)四边形EFGH(与之前画出的结构一样),且四边形EFGH的周长和面积分别等于矩形ABCD周长和面积的一半。请问有这种可能性吗?
(8个红点)

请用徳语或英语回答。

rus

665

«Я нарисовала себе этот прямоугольник ABCD (a = 7 см, b = 8 см). Потом я сконструировала центры сторон и получила маленький четырёхугольник EFGH. Для него я рассчитала периметр и площадь», сказала Мария Бернду.
Как велика процентная доля периметра и площади маленького четырёхугольника по сравнению с большим прямоугольником? Является ли маленький четырёхугольник тоже прямоугольником? (3+3+2 = 8 синих очков)
Чёрная линия через точку D образует вместе со стороной c угол 45°. Точки A, C и D остаются неизменными. Точка B доходит до чёрной линии. Четырёхугольник EFGH конструируется снова как в начале. Можно ли переместить точку B на чёрной линии так, чтобы площадь и периметр четырёхугольника EFGH составляли половину площади и периметра ABCD? 8 красных очков

ung

665

  • Josefine Renz <Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!;,

„Ezt az ABCD (a: 7 cm, b: 8 cm) derékszögű négyszöget szerkesztem. Ezután az oldalak középpontját szerkesztem meg és így megkapom az EFGH négyszöget. Ebből kerületet és területet számítok.” – mondta Mária Berndnek. Százalékosan mekkora a kerülete és a területe a kis négyszögnek a nagyhoz képest? A kis négyszög is egy derékszögű négyszög? (3+3+2 : 8 kék pont)
A D ponton áthaladó fekete vonal a c oldallal 45’-os szöget zár be. Az A, C és D pontok maradnak a helyükön. A B pont a fekete vonalra kerül. Az EFGH négyszög úgy, mint az előzőekben kerül megszerkesztésre. Lehetséges a B pontot a fekete vonalon úgy eltolni, hogy az EFGH négyszög kerülete és területe feleakkora legyen, mint az ABCD négyszögé? 8 piros pont

frz

665

«J'ai dessiné ce rectangle ABCD (a = 7 cm, b = 8 cm). Ensuite, j'ai construit les points centraux des côtés et j'ai obtenu le petit carré EFGH. À partir de là, j'ai calculé la circonférence et l'aire », a déclaré Maria à Bernd.
Quel est le pourcentage de la circonférence et de l'aire du petit carré par rapport au grand rectangle? Le petit carré est-il aussi un rectangle? (3 + 3 + 2 = 8 points bleus)
La ligne noire passant par D forme un angle de 45 ° avec le côté c. Les points A, C et D restent fixes. Le point B vient sur la ligne noire. Le carré EFGH est reconstitué comme au début.
Est-il possible de déplacer le point B sur la ligne noire de sorte que l'aire et le périmètre d'EFGH soient la moitié de l'aire et du périmètre d'ABCD? 8 points rouges

esp

665

“He esbozado un rectángulo ABCD (a = 7 cm, b = 8 cm). Después, he construido los puntos centrales de los lados y así resultó el cuadrilátero pequeño EFGH. De esto, he calculado perímetro y área”, le dijo María a Bernd. ¿A cuánto está el porcentaje del perímetro y del área respectivamente del rectángulo pequeño en cuanto al rectángulo grande? ¿El cuadrilátero pequeño igual es un rectángulo? (3+3+2=8 puntos azules)
La línea recta negra por D forma un ángulo de 45° junto con el lado c. Los puntos A, C y D quedan fijos, pero el punto B se pone encima de la recta negra. A continuación, se construye el cuadrilátero EFGH como se hizo al principio otra vez. Ahora, ¿es posible desplazar el punto B de la manera tal que el área y el perímetro de EFGH se ponen exactamente a la mitad de grande de área y perímetro de ABCD? 8 puntos rojos. 

en

665

“I did draw a rectangle ABCD (a =7 cm, b = 8 cm). Then I constructed the centers of the sides and got the little quadrilateral EFGH. Of this quadrilateral I calculated perimeter and area.”, Maria told Bernd. How big is the percentage concerning perimeter and area of the little quadrilateral in contrast to the big rectangle? Is the little quadrilateral a rectangle too? (3+3+2 = 8 blue points)
The black line through D forms an 45° angle with side c. The points A, C and D stay fixed. Point B is drawn on the black line. The quadrilateral EFGH is constructed again like before. Is it possible to move point B on the black line, so that area and perimeter of EFGH are only half as big as area and perimeter of ABCD? 8 red points

it

665

“Ho disegnato il rettangolo ABCD (a=7 cm: b =8 cm). Poi ho costruito i punti centrali dei lati, ricevendo così il quadrilatero EFGH. Di quest’ultimo ho computato circonferenza ed area.”, Maria diceva a Bernd. Qual’è la percentuale di circonferenza ed area del piccolo quadrilatero in paragone al rettangolo grande? Si tratta anche del quadrilatero piccolo di un rettangolo? (3+3+2=8 punti blu)
La linea nera che contiene D forma col lato c un angolo di 45°. I punti A, C e D rimangono dove sono, mentre il punto B viene positionato sulla linea nera. Poi si costruisce il quadrilatero EFGH come descritto prima. È possible, muovere il punto B sull alinea nera nel modo che area a circonferenza di EFGH siano la metà di area e circonferenza di ABCD) 8 punti rossi.

Lösung/solution/soluzione/résultat/Решение:
Musterlösung von Gerhard Palme, dake. --> pdf <--

 


Aufgabe 6

Wertungsaufgabe 666

„Die Aufgabennummer 666 ist schon eine besondere Zahl.“, meinte Mike.
„Klar, alle Ziffern gleich, das hat schon was.“, erwiderte Maria.
Wie sieht die 666 mit römischen Zahlzeichen aus?
Ist es eine reiche Zahl? (Ist die Summe der echten Teiler einer natürlichen Zahl größer als die Zahl selbst, so wird die Zahl auch als reich bezeichnet..)
Es heißt, die Summe der ersten x aufeinanderfolgenden Quadrate von Primzahlen soll auch 666 ergeben, stimmt das? (1+2+1 =4 blaue Punkte)
Vier rote Punkte gibt es, wenn man 5-stellige Primzahlen entdeckt, die die 666 in der Mitte haben. Also a6661, b6663, c6667 und d6669. Sollte es mehrere Lösungen für die erste Ziffer geben, dann reicht die Angabe eines Beispiels.

Termin der Abgabe 11.03.2021. Срок сдачи 11.03.2021. Ultimo termine di scadenza per l´invio è il 11.03.1921. Deadline for solution is the 11th. March 2021. Date limite pour la solution 11.03.2021. Soluciones hasta el 11.03.2021. Beadási határidő 2021.03.11. 截止日期: 2021.03.11 - 请用徳语或英语回答。

ch

"题号666是一个特别的数字。" 迈克说。
"对呀,每个数字都是一样的。" 玛丽雅附议道。
那么罗马数字666有什么含义呢?
它是一个盈数吗?(一个自然数,除去它本身以外的所有约数之和大于它本身,这个自然数被称为盈数。)
前x个连续质数的平方和等于666, 对吗?(1+2+1 =4个蓝点)
如果有人能找到一个666为中间三位数的五位数的质数, 比如a6661, b6663,c6667 和d6669, 就可以得到四个红点。
如果第一位数字相同的时候有几种答案,那么给出一个例子即可。请用徳语或英语回答。

rus

«Номер задачи 666 действительно является особым числом», сказал Майк.
«Конечно, все цифры одинаковые, это уже что-то», ответила Мария.
Как выглядит число 666 с римскими цифрами?
Это избыточное число? (Если сумма собственных делителей натурального числа больше, чем само число, то такое число называется также избыточным (или абундантным).)
Говорят, что сумма первых x последовательных квадратов простых чисел также должна составлять 666, это правильно? (1 + 2 + 1 = 4 синих очка)
Вы получите четыре красных очка, если вы обнаружите 5-значные простые числа, в центре которых находится 666. Итак, a6661, b6663, c6667 и d6669. Если существуют несколько решений для первой цифры, достаточно привести один пример.

ung

„A 666-os számú feladatszám különleges.” – vélte Mike. „Valóban, minden szám ugyanaz, ebben van valami.” – válaszolta Mária.
Hogy néz ki a 666 római számokból? Ez egy „gazdag” szám? (Az eredeti számok összege egy olyan természetes szám, ami nagyobb, mint maga a szám. Ekkor „gazdag” számnak hívjuk.)
Igaz-e, hogy az első x egymást követő prímszámok négyzetének összege 666 lesz? (1+2+1: 6 kék pont)
Négy piros pontot kap, aki megnevezi azt az 5 számjegyű prímszámot, amelyiknek a közepében 666 van. Tehát a6661, b6663, c6667 és d6669. Amennyiben több megoldás van az első számra, elegendő a példa megadása.

frz

"Le numéro d'exercice 666 est un numéro spécial", a déclaré Mike.
"Bien sûr, tous les chiffres sont les mêmes, c'est quelque chose", répondit Maria.
À quoi ressemble le 666 avec des chiffres romains?
Est-ce un nombre riche? (Si la somme des diviseurs réels d'un nombre naturel est supérieure au nombre lui-même, le nombre est également appelé riche.)
Ils disent que la somme des x premiers carrés successifs de nombres premiers devrait également s'élever à 666, est-ce exact? (1 + 2 + 1 = 4 points bleus)
Il y aura quatre points rouges lorsque on découvre des nombres premiers à 5 chiffres qui ont 666 au milieu. Donc a6661, b6663, c6667 et d6669. S'il existe plusieurs solutions pour le premier chiffre, il suffit de donner un exemple.

esp

"El número de la tarea 666 me parece un número muy especial", dijo Mike.
"Claro, todos los dígitos son iguales, eso es algo", respondió María.
¿Cómo se ve el 666 con números romanos?
¿Es un número rico? (Si la suma de los divisores reales de un número natural es mayor que el propio número, éste también se puede llamar rico).
Se dice que la suma de los primeros x cuadrados consecutivos de números primos debe sumar también 666, ¿es esto cierto? (1+2+1 =4 puntos azules).
Se reciben cuatro puntos rojos para descubrir primos de 5 dígitos que tienen 666 en el medio: a6661, b6663, c6667 y d6669. Si hay varias soluciones para la primera cifra, basta con dar un ejemplo.

en

“The number of our mathematical task 666 really is a special number.”, Mike said.
“Sure, all digits are the same, that’s quite impressive.”, answered Maria.
How does 666 look in Roman numerals?
Is it a rich number? (If the sum of the real factor of a whole number is bigger than the number itself, the number is described as rich.)
It’s told that the sum of the first x consecutive squares of prime numbers should also be 666, is that correct? (1+2+1 =4 blue points)
You will get four red points, if you find five-digit prime numbers, which have the 666 in the middle. Like a6661, b6663, c6667 and d6669. If there are many solutions for the first digit, one example is enough.

it

„IL numero del compito 666 è molto speciale.” Mike diceva. “Certo! Tutte le cifre uguali; non è mica male.”, Maria replicava. Come si scrive il numero 666 in numero romano? È un numero “ricco”? (Nel caso che la somma dei divisori veri di un numero naturale è più grande del numero stesso, si parla di un numero “ricco”.)
Si dice che la somma dei primi x quadrati di numeri primi sia uguale a 666. È vero? (1+2+1=4 punti blu)
Quattro punti rossi vengono dati per la scoperta di numeri primi a cinque cifre che abbiano 666 al centro. Quindi a6661, b6663, c6667 e d6669. Nel caso che ci sia più di una soluzione per la prima cifra, basta nominare un esempio.

Lösung/solution/soluzione/résultat/Решение:

Fast 170 Einsendungen sind eingetroffen, damit wurde ein neuer Teilnahmerekord für eine einzelne Aufgabe erreicht.
Etwas "Streit" gab es um die Zahl 1. In einigen Publikationen zählt die 1 nicht als echter Teiler, sondern als "trivialer" Teiler, anderen Definitionen schließen die "1" mit ein. Eine Konsequenz daraus ist: Primzahlen haben keinen echten Teiler oder eben nur die 1. Nun ja. Die Auswirkung auf die Aufgabe liegt in der Summe der echten Teiler von 666, die ist dann 815 oder 816. Wie auch immer 666 ist eine reiche Zahl..
Musterlösung von Birgit, danke. --> pdf <--
Es gibt auch sieben fünfstellige Primzahlen der Form: 666ab.


Aufgabe 7

Wertungsaufgabe 667

667

„Das sieht ja wie ein Teil einer Spirale aus“, sagte Lisa. „Das war meine Absicht und die Konstruktion ist auch nicht schwer.“, erwiderte Maria.
Start ist bei S (0; 0). Die Geraden sind die Bilder der Funktionen y = f(x) = x und y =g(x) = - x.
SA = 1, SB = 2, SC = 3 , … SI = 9. (S ist der Punkt 0, A der Punkt 1, B der Punkt 2, …)
Welche Koordinaten haben der Punkt 100 und der Punkt 200? (2x3 = 6 blaue Punkte.)
Wie lang sind die Strecken von ABCDEFGHI insgesamt? Wie groß ist der Flächeninhalt von ABCDEFGHIA (2x4= 8 rote Punkte.) * Gibt es eine elegante Formel für eine Spirale, auf der die Punkte A B C D E F G H I liegen?

Termin der Abgabe 18.03.2021. Срок сдачи 18.03.2021. Ultimo termine di scadenza per l´invio è il 18.03.1921. Deadline for solution is the 18th. March 2021. Date limite pour la solution 18.03.2021. Soluciones hasta el 18.03.2021. Beadási határidő 2021.03.18. 截止日期: 2021.03.18 - 请用徳语或英语回答。

chin

第667号数学题

667

"它看起来像螺旋的一部分。" 丽莎说。
"这也是我的看法,这样的构图并不难。" 玛丽雅回答说。
以S(0,0)为起点。 直线是函数y=f(x)=x 和 y=g(x)=-x的图像。 SA = 1, SB = 2, SC = 3 , … SI = 9。 (S是点0, A是点1, B是点2, 以此类推)
那么点100 和点200的坐标是什么?(2x3 = 6个蓝点)
ABCDEFGHI的路线一共有多长? 图形ABCDEFGHIA的面积是多少?(2x4 =8个红点)
能不能用一个优美的公式来表述这个标有A、B、C、D、E、F、G、H和I的螺旋呢?

rus

667

«Это выглядит же как часть некой спирали», сказала Лиза. «Это и было моим намерением и конструкция не сложная», ответила Мария.
Старт находится в точке S (0;0). Прямые являются графиками функций y = f(x) = x и y = g(x) = - x.
SA = 1, SB = 2, SC = 3 , … SI = 9. (S является точкой 0, A - точкой 1, B - точкой 2, …).
Какие координаты имеют точки 100 и 200? (2 x 3 = 6 синих очков.)
Какую длину имеют отрезки ABCDEFGHI вместе взяты?
Какова площадь многоугольника ABCDEFGHIA (2 x 4= 8 красных очков). * Существует ли изящная формула для спирали, на которой находятся точки A B C D E F G H I ?

hun

667

„Ez úgy néz ki, mint egy csigavonal része.” – mondta Lia. „Ez volt a célom és a szerkesztés sem nehéz.” – válaszolt Mária.
Kezdés S-nél S (0; 0). Az egyenesek az alábbi függvényből y = f(x) = x und y =g(x)= - x vezethetők le.
SA = 1, SB = 2, SC = 3 , … SI = 9. (S a pont 0, A pont 1, B a pont 2, ….). Mik a koordinátai a pont 100 és 200-nak? (2x3, azaz 6 kék pont)
Milyen hosszú az ABCDEFGHI szakasz összesen? Mekkora a területe az ABCDEFGHIA-nak? 2x4 pont, azaz 8 piros pont. Létezik az ABCDEFGHI pontokon fekvő csigavonal leírására szolgáló elegáns képlet?

frz

667

"Cela ressemble à une partie d'une spirale", a déclaré Lisa. "C'était mon intention et la construction n'est pas difficile non plus", a répondu Maria.
Le départ est à S (0; 0). Les droites sont les images des fonctions y = f (x) = x et y = g (x) = - x.
SA = 1, SB = 2, SC = 3, ... SI = 9. (S est le point 0, A est le point 1, B est le point 2, ...)
Quelles sont les coordonnées du point 100 et du point 200? (2x3 = 6 points bleus.)
Quelle est la longueur totale d'ABCDEFGHI ? Quelle est la superficie de ABCDEFGHIA (2x4 = 8 points rouges. * Il existe une formule élégante pour une spirale sur laquelle les points A B C D E F G H I reposent?

esp

667

"Eso parece parte de una espiral", dijo Lisa. "Esto era mi intención, y además, no es difícil de construir", respondió María.
Comienza en S (0; 0). Las rectas son las imágenes de las funciones y = f(x) = x e y =g(x) = - x. SA = 1, SB = 2, SC = 3 , ... SI = 9. (S es el punto 0, A es el punto 1, B es el punto 2, ...).
¿Cuáles son las coordenadas de los puntos 100 y 200? (2x3 = 6 puntos azules.)
¿Cuál es la longitud total de las líneas de ABCDEFGHI? ¿Cuál es el área de ABCDEFGHIA? 2x4= 8 puntos rojos. * ¿Existe una fórmula elegante para una espiral en la que se encuentran los puntos A B C D E F G H I?

en

667

“Looks like a part a spiral for me”, Lisa said. “That was my intention and the construction isn’t even very difficult.”, answered Maria.
Start at S (0; 0). The straight lines are the transformation of the functions y = f(x) = x and y =g(x) = - x.
SA = 1, SB = 2, SC = 3 , … SI = 9. (S is point 0, A is point 1, B is point 2, …)
Which coordinates do point 100 and point 200 have? (2x3 = 6 blue points.)
How long are the line segments of ABCDEFGHI all together? How big is the area of ABCDEFGHIA (2x4= 8 red points.) * Is there an elegant formula for a spiral on which the points A B C D E F G H I are on?

it

667

“Ha l’aspetto di una parte di un’elica”, diceva Lisa. “Ecco cos’era la mia intenzione e la costruzione non è mica difficile.”, Maria replicava.
Si inizia in S(0;0). Le linee nere ich habe hier “schwarz” eingefügt, da die Teile der Spirale ja auch Geraden darstellen. sono i grafi dei funzioni y=f(x)=x e y=f(x)=-x.
SA=1, SB=2, SC=3, ... SI=9. (S sia il punto 0, A il punto 1, B il punto 2, …)
Quale sono le coordinate dei punti 100 e 200? (2*3=6 punti blu)
Qual’e la somma di tutti i segmenti ABCDEFGHI? Qual’è l’area di ABCDEFGHIA? (2*4=8 punti rossi. *Esiste una formula elegante per un’ elica, sull aquale siano posizionati i punti A B C D E F G H I?

Lösung/solution/soluzione/résultat/Решение:

Musterlösung kurz und präzise von Calvin, --> pdf <--, danke. Passende GeoGebradatei von Volker --> ggb <--, danke.


Aufgabe 8

Wertungsaufgabe 668

668

Anregung von Hirvi, danke.

„Diese Konstruktion kommt mir bekannt vor.“, meinte Bernd zu Mike. „Nun ja, du hast so etwas bei der Aufgabe 655 – kannst ja noch mal schauen – konstruiert. Allerdings habe ich ein anderes Dreieck verwendet und du hattest nur das blaue Quadrat ermittelt. Es ist das größte Quadrat in dem Dreieck ABC, welches auf der Seite c des Dreiecks liegt. Ich habe auch die anderen passenden Quadrate konstruiert.“
Wie groß sind Flächeninhalt und Umfang des Dreiecks ABC und der Flächeninhalt des blauen Quadrates. (2+3+3 blaue Punkte). Wird gemessen, wären es natürlich weniger Punkte.
Zu berechnen ist der Flächeninhalt aller Teilflächen des Dreiecks ABC, die nicht von den Quadraten überdeckt werden. (8 rote Punkte)

Termin der Abgabe 25.03.2021. Срок сдачи 25.03.2021. Ultimo termine di scadenza per l´invio è il 25.03.1921. Deadline for solution is the 25th. March 2021. Date limite pour la solution 25.03.2021. Soluciones hasta el 25.03.2021. Beadási határidő 2021.03.25.截止日期: 2021.03.25 - 请用徳语或英语回答。

chin

第668道数学题

该数学题的灵感来源于Hirvi。

„这个构图对我来说很熟悉。“ 贝恩德跟迈克说。

668

„对的,在第655题中已经做过这样的构图,你可以去查看。不过这次我使用了一个别的三角形。你看到的蓝色的正方形,
它是三角形ABC内最大的内接正方形,且其中一边位于三角形的c边上。我也画出了另外两个与之匹配的内接正方形。"

那么,三角形ABC的面积和周长以及蓝色正方形的面积各是多少呢? (2+3+3 个蓝点)。
如果是通过测量得出的结果,当然只能得很少的分数。

另外,请求出三角形ABC中未被正方形覆盖的面积。(8 个红点)

rus

668

По предложению от Hirvi
«Эта конструкция кажется мне знакомой», - сказал Бернд Майку. «Ну что ж, ты построил что-то подобное в задаче 655 - ты можешь это посмотреть еще раз, - однако я использовал другой треугольник, а ты нашёл только синий квадрат. Это самый большой квадрат в треугольнике ABC, который находится на стороне c треугольника. Я также построил другие подходящие квадраты.» Каковы площадь и периметр треугольника ABC и площадь синего квадрата. (2 + 3 + 3 синих очка). Если их измерить, то очков, конечно, будет меньше. Подлежит расчёту сумма всех частичних площадей треугольника ABC, которые не покрыты квадратами. (8 красных очков)

ung

668

Hirvi kezdeményezésére
„Ez a szerkesztés nagyon ismerős nekem.” – mondta Bernd Mikenak. „Igen, ilyesmit már a 655-es feladatban, utána is tudsz nézni, szerkesztettél. Mindenesetre itt másik háromszöget alkalmaztam és te csak a kék négyzetet derítetted fel. Ez a legnagyobb négyszög az ABC háromszögben, ami a háromszög c oldalán fekszik. Egyéb érintő négyszöget is szerkesztettem.”
Mekkora a területe és a kerülete az ABC háromszögnek és a felülete a kék négyzetnek. (2+3+3 kék pont). Lemérve természetesen kevesebb pontot ér.
Számoljuk ki a területét minden részfelületnek az ABC háromszögben, amit a négyszögek nem takarnak. (8 piros pont)

frz

668

 Suggestion de Hirvi
"Cette construction me semble familière", a déclaré Bernd à Mike. "Eh bien, t'as construit quelque chose comme ça dans l'exercice 655 - tu peux regarder- .. Cependant, j'ai utilisé un triangle différent et toi, t'as trouvé que le carré bleu. C'est le plus grand carré du triangle ABC, qui se trouve du côté c du triangle. J'ai également construit les autres carrés correspondants. "
Quelle est l'aire et le périmètre du triangle ABC et l'aire du carré bleu. (2 + 3 + 3 points bleus). S'il est mesuré, il y aura bien sûr moins de points.
Il faut calculer l'aire de toutes les sous-aires du triangle ABC qui ne sont pas couvertes par les carrés. (8 points rouges)

esp

668

Sugerencia de Hirvi
"Esta construcción me resulta familiar", dijo Bernd a Mike. "Bueno, has construido algo así en la tarea 655 - puedes mirar de nuevo si quieres.... Sin embargo, utilicé un triángulo diferente y tú sólo habías calculado el cuadrado azul. Es el cuadrado más grande del triángulo ABC, que está en el lado c del triángulo... Después he construido los otros cuadrados a juego también."
¿Cuál es el área y el perímetro del triángulo ABC y el área del cuadrado azul? (2+3+3 puntos azules). Si se mide, se dan menos puntos, por supuesto.
Hay que calcular el área de todas las áreas parciales del triángulo ABC que no están cubiertas por los cuadrados. (8 puntos rojos)

en

668

Suggestion by Hirvi
“This construction seems familiar.”, Bernd told Mike. „Sure, you constructed something like this in task 655 – just take a look back. “However, I used another triangle, you only calculated the blue square. It’s the biggest square inside the triangle ABC, lying on side C of the triangle. I constructed the other fitting squares too.“ How big are area and perimeter of the triangle ABC and the area of the blue square. (2+3+3 blue points). If you measure there will be fewer points, of course.
You will have to calculate all part areas of the triangle ABC, which don’t get hidden by the squares. (8 red points)

it

668

Secondo un’ incitamento di Hirvi
„Mi sembra di conoscere questa costruzione”, Bernd diceva a Mike. “Vero; una cosa del genere hai già fatto nel compito 655 – guarda lì, se vuoi. Solo che all’occasione avevo usato un’ altro triangolo e tu avevi trovato soltanto il quadrato blu. è il quadrato più grande nel triangolo ABC, situato sul lato c. Oggi ho costruito anche gli altri quadrati corrispondenti.”
Quale sono l’area e la circonferenza del triangolo ABC e qual’è l’area del quadrato blu? (2+3+3 punti blu). Se in vece di calcolare, si misura, vengono naturalmente dati meno punti.
Sono da calcolare tutte le parti dell’area del triangolo ABC, che non sono coperte dagli quadrati. (8 punti rossi)

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Hans, --> pdf <--, danke


Aufgabe 9

Wertungsaufgabe 669

669

„Oh, was mag wohl das Geheimnis dieses Quaders sein?“, fragte sich Maria, als sie das Bild auf Opas Schreibtisch fand.
Als Opa ins Zimmer kam und sie ihn nach dem Geheimnis fragte bzw. ob es denn eins gäbe, kam eine Bestätigung von ihm. „Der Quader mit den Abmessungen 240 mm x 44 mm x 117 mm hat eine seltene Eigenschaft. Die Längen aller Diagonalen auf den Flächen sind – in mm angegeben – auch ganze Zahlen.“
Wie lang sind die drei Diagonalen? 3 blaue Punkte.
Es gibt auch einen Quader, dessen längste Seite 1584 mm groß ist und dessen Diagonalen auf den Flächen ganzzahlig sind. Für die Ermittlung der kürzeren Kantenlängen gibt es 6 rote Punkte.

Termin der Abgabe 01.04.2021. Срок сдачи 01.04.2021. Ultimo termine di scadenza per l´invio è il 01.04.1921. Deadline for solution is the 1th. April 2021. Date limite pour la solution 01.04.2021. Soluciones hasta el 01.04.2021. Beadási határidő 2021.04.01.截止日期: 2021.04.01 - 请用徳语或英语回答。

chin

第669道题

669

当玛丽雅看到爷爷书桌上的一张图片时就自言自语道:"这个长方体的秘密到底是什么呢?"
在爷爷走进房间后,她询问爷爷这个长方体是否有秘密,或者是否至少有一个秘密的时候,爷爷给了她确切的答案。

"这个长、宽、高分别为240毫米、44毫米和117毫米的长方体有一个罕见的特点,它表面上的每一条对角线以毫米为单位的长度也是整数。"
那么这三条对角线的长度分别是多少呢? (3个蓝点)

我们也有一个最长边的长度为1584毫米,各面的对角线长度是整数的长方体, 请找出来。算出其余短边的长度可以得到6个红点。

截止日期: 2021.04.01 请用徳语或英语回答。

rus

669

«Ой, каким же секретом может обладать этот прямоугольный параллелепипед?» спросила себя Мария, когда она нашла эту картину на письменном столе дедушки.
Когда дед вошёл в комнату и она его спросила, какой у параллелепипеда секрет и есть ли у него вообще секрет, он дал подтверждение: »Прямоугольный параллелепипед с размерами 240 мм x 44 мм x 117 мм обладает редким свойством. Длины всех диагоналей на плоскостях составляют в мм тоже целые числа.»
Какие значения имеют длины этих трёх диагоналей? 3 синих очка.
Существует также прямоугольный параллелепипед с наибольшим ребром длиной 1584 мм, у которого длины диагоналей по плоскостям составляют также целые числа.
За определение длин более коротких ребров вы получите 6 красных очков.

hun

669

Oh, vajon mi lehet a titka ennek a doboznak? – kérdezte magában Maria, amikor megtalálta a képet nagyapja íróasztalán.
Amikor nagyapja a szobába lépett és a titok után kérdezte, illetve, hogy egyáltalán van-e ilyen titok, a válasz megerősítette, hogy van. „Ennek a doboznak, amelynek méretei 240mmx44mmx117mm, egy különös tulajdonsága van. A felszínén levő átlók hossza – mm-ben mérve - szintén egész számok."
Milyen hosszú a három átló? 3 kék pont.
Van egy olyan doboz is, melynek a leghosszabb éle 1584 mm hosszú és amelynek felszíni átlói egész számok. A rövidebb élhosszak megadásáért 6 piros pont jár.

frz

669

"Oh, quel est le secret de ce cuboïde?" demanda Maria quand elle trouva la photo sur le bureau de grand-père.
Lorsque grand-père est entré dans la pièce et lui a demandé quel était le secret ou s'il y en avait un, il a reçu une confirmation. "Le cuboïde de dimensions 240 mm x 44 mm x 117 mm a une propriété rare. La longueur de chaque diagonale sur les surfaces est - en mm - également des nombres entiers."
Quelle est la longueur des trois diagonales? 3 points bleus.
Il existe également un parallélépipède dont le côté le plus long fait 1584 mm et dont les diagonales sur les surfaces sont des nombres entiers. Il y aura 6 points rouges pour déterminer les longueurs d'arêtes les plus courtes.

esp

669

"Oh, ¿cuál puede ser el secreto de este ortoedro?", se preguntó María al encontrar el cuadro en el escritorio del abuelo.
Cuando el abuelo entró en la habitación y le preguntó cuál era el secreto, o más bien si lo había, el abuelo se lo confirmó. "El cubo de 240 mm x 44 mm x 117 mm tiene una propiedad poco común... La longitud de cada diagonal en las caras (dada en mm) también son números enteros".
¿Cuál es la longitud de las tres diagonales? 3 puntos azules.
También existe un cuboide cuyo lado más largo es de 1584 mm y cuyas diagonales en las caras son enteras. Para el cálculo de las longitudes de borde más cortas se reciben 6 puntos rojos.

en

669

“Oh, what could be the secret of this cuboid?”, Maria asked herself when she found the picture on her grandpa’s desk.
When grandpa came into the room and she asked him about the secret or if there even was one, he confirmed it. “The cuboid with the measurement 240 mm x 44 mm x 117 mm does have a rare characteristic. The length of every diagonal on the areas – given in mm – are integers too.”
How long are the three diagonals? 3 blue points.
There is also a cuboid, which longest side is 1584 mm big and which diagonals on the areas are all integer. For finding the short edge length you will get 6 red points.

it

669


“Quale sarà il segreto di questo cuboide?”, Maria si chiedeva quando trovava l’immagine di esso sulla scrivania del nonno.
Quando il nonno entrava nella stanza, confermava che un segreto ci sia davvero. “Il cuboide con le dimensioni 240 mm x 44 mm x 117 mm ha una caratteristica molto speciale: Le lunghezze di tutte e tre diagonali delle superfici laterali sono – sempre misurate in mm – anche numeri interi. Quale misura hanno queste diagonali? 3 punti blu.
Esiste anche un cuboide, del quale lato più lungo ha 1584 mm e le quali diagonali sono anche loro numeri interi. Per la scoperta della lunghezza degli altri spigoli vengono dati 6 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

Es ging um den Eulerziegel. Im passenden Wikipediaartikel ist nur eine der gefundenen Lösungen aufgeführt. Passendes Video von DorFuchs: https://www.youtube.com/watch?v=TG_AcUxQwT8
Musterlösung von Birgit, --> pdf <--, denke. Noch mehr Eulertripel --> pdf <--, ermittelt von Ingmar Rubin, danke


Aufgabe 10

Wertungsaufgabe 670

670

„Schau mal, ich habe selber ein Klimadiagramm erstellt.“; sagte Mike zu Bernd. “Die Daten habe ich von klimadiagramme.de . Die Temperaturen sind fast das gesamte Jahr gleich – rote Linie. Das Bild ist recht groß, so dass die Werte für den Niederschlag zu erkennen sind. Die Säulen für die Monate sind immer 2,0 cm breit.. Der Abstand zwischen 100 und 200 auf der rechte Achse beträgt 4,0 cm.“ „Verstehe.“
Wie groß ist die Niederschlagsmenge im Jahr? Wie groß ist die durchschnittliche Niederschlagsmenge pro Monat? (3 blaue Punkte)
Wie groß ist die Fläche des Vierecks ABCD? 6 rote Punkte
AD berührt die Säule im April, CD berührt die Säule im Oktober. A, B, C liegen auf den Rändern der Fläche des Diagramms.

Termin der Abgabe 15.04.2021. Срок сдачи 15.04.2021. Ultimo termine di scadenza per l´invio è il 15.04.1921. Deadline for solution is the 15th. April 2021. Date limite pour la solution 15.04.2021. Soluciones hasta el 15.04.2021. Beadási határidő 2021.04.15. 截止日期: 2021.04.15 - 请用徳语或英语回答。

chin
第670道题

670

"看,我自己制作了一张气候图。"迈克对贝恩德说。
"这些数据是在网址klimadiagramme.de上找到的。
气温几乎全年都一样,就是这条红线。
这张图足够大,所以可以清楚地看出降水量值。
代表月份的柱形的宽度都是2厘米。
在右轴上从100到200的距离是4厘米。"

"明白!" 贝恩德说。

那么全年降水量是多少?月平均降水量又是多少呢?(3个蓝点)
还有四边形ABCD的面积是多少? (6个红点)
其中直线AD相切于四月的柱形,CD和十月的柱形相切,点A、B、C位于图表的边缘。

截止日期: 2021.04.15 请用徳语或英语回答。

rus

670

 «Посмотри, я сам сделал диаграмму климата», - сказал Майк Бернду. «Я получил данные с klimadiagramme.de. Температура одинакова почти круглый год - красная линия. Рисунок довольно большой, так что можно увидеть значения осадков. Столбцы для месяцев всегда имеют ширину 2,0 см. Расстояние между 100 и 200 на правой оси составляет 4,0 см.» «Понятно». Насколько велико количество осадков в году? Каково среднее количество осадков в месяц? (3 синих очка) Какова площадь четырёхугольника ABCD? 6 красных очков AD касается столбца в апреле, CD касается столбца в октябре. A, B, C лежат на краях плоскости диаграммы.

hun

670

„Nézd csak, készítettem magam egy Klímadiagrammot” – mondta Mike Berndnek. Az adatokat a klimadiagramm.de-ről vettem. A hőmérséklet csaknem egész évben egyforma – ez a piros vonal. A kép elég nagy ahhoz, hogy a csapadékmennyiség értékeit felismerhessük. A hónapok oszlopai mindig 2 cm szélesek. A távolság 100 és 200 közt a jobb tengelyen 4 cm. „Értem”
Mennyi eső esik egy évben? Mekkora az átlagos csapadékmennyiség havonta? (3 kék pont)
Mekkora a területe az ABCD négyszögnek? 6 piros pont
AD érinti az áprilisi hónapot, CD az októbert. A, B, C a diagramm felületnek a szélén fekszik.

frz

670

"Regardes, j'ai fait un diagramme climatique moi-même.", dit Mike à Bernd: «J'ai obtenu les données de klimadiagramme.de.
Les températures sont les mêmes presque toute l'année - ligne rouge. L'image est assez grande, de sorte que les valeurs des précipitations peuvent être vues. Les colonnes pour les mois ont toujours une largeur de 2,0 cm. La distance entre 100 et 200 sur l'axe de droite est de 4,0 cm. "," Je comprends. "
Quelle est la pluviométrie dans l'année? Quelle est la pluviométrie moyenne par mois? (3 points bleus)
Quelle est l'aire du carré ABCD? 6 points rouges
AD touche la colonne en avril, CD touche la colonne en octobre. A, B, C se trouvent sur les bords de la surface du diagramme.

esp

670

"Mira, yo mismo he hecho un diagrama climático", le dijo Mike a Bernd. "He obtenido los datos de klimadiagramme.de. Las temperaturas son casi las mismas durante todo el año - línea roja. La imagen es bastante grande, para que se reconozcan los valores de las precipitaciones. Las columnas de los meses tienen siempre 2,0 cm de ancho.... La distancia entre 100 y 200 en el eje derecho es de 4,0 cm". "Ya veo".
¿Cuál es la cantidad de precipitaciones en un año? ¿Cuál es la cantidad media de precipitaciones al mes? (3 puntos azules)
¿Cuál es el área del cuadrilátero ABCD? 6 puntos rojos
La AD toca la columna en abril, la CD toca la columna en octubre. A, B, C se encuentran en los bordes del área del diagrama.

en

670

“Look I created a climate diagram myself.”; Mike told Bernd. “The data I’ve just got from klimadiagramme.de . The temperatures are nearly the same for the whole year – red line. The picture is really big, so that you can recognize the data for rainfall. The columns for the months are always 2,0 cm wide. The distance between 100 and 200 on the right axis is 4,0 cm.” “I understand.”
How big is the average rainfall per year? How big is the average rainfall per month? (3 blue points)
How big is the area of the quadrangle ABCD? 6 red points
AD touches the column in April, CD touches the column in October. A, B, C are on the rims of the diagram’s area.

it

670

“Guarda, ho fatto da solo un diagramma climatico.”, Mike diceva a Bernd. “I dati ho preso da klimadiagramme.de. Le temperature non cambiano quasi per niente durante tutto l’anno – linea rossa. Poi si vedono le quantità delle precipitazioni. Le colonne per ogni mese hanno una larghezza di 2,0 cm. La distanza entro 100 e 200 sull’asse destro è 4,0 cm.” – “Ah, capisco!”
Qual’è la piovosità per tutto l’anno? Qual’è la piovositá media per mese? (3 punti blu)
Qual’è l’area del quadrilatero ABCD? (6 punti rossi)
AD tocca la colonna di aprile, CD tocca la colonna di ottobre. A, B, C sono situate sui lati del diagramma.

Lösung/solution/soluzione/résultat/Решение:
Musterlösung von Günter S., danke. --> pdf <--


Aufgabe 11

Wertungsaufgabe 671

„Unser Lehrer hat uns diese zwei Zahlen im Online-Chat genannt: 112233 und 11223344.“ Die Ziffern der Zahlen sollen so umgestellt werden, dass zwischen zwei gleichen Ziffern immer eine der anderen Ziffern steht.“, sagte Mike zu Maria und Bernd.

Achtung Korrektur: Die Ziffern der Zahlen sollen so umgestellt werden, dass zwischen den Einsen eine andere Ziffer steht. Zwischen den  Zweien  zwei andere Ziffern, zwischen den Dreien drei andere und (bei rot) zwischen den Vieren vier andere Zahlen stehen.“, sagte Mike zu Maria und Bernd.
Wie lautet die sechsstellige Zahl, die die Ziffern 1; 1; 2; 2; 3 und 3 enthält und die obige Bedingung erfüllt? 3 blaue Punkte
Wie lautet die achtstellige Zahl, die die Ziffern 1; 1; 2; 2; 3; 3; 4 und 4 enthält und die obige Bedingung erfüllt? 3 rote Punkte

Termin der Abgabe 22.04.2021. Срок сдачи 22.04.2021. Ultimo termine di scadenza per l´invio è il 22.04.1921. Deadline for solution is the 22th. April 2021. Date limite pour la solution 22.04.2021. Soluciones hasta el 22.04.2021. Beadási határidő 2021.04.22. 截止日期: 2021.04.22 - 请用徳语或英语回答。

chin

第671道题

"我们老师在在线聊天上给了我们这两个数儿: 112233 和11223344.
现在重新排列数字的位数,使之两个相同的数字中间总是存在一个其它的数字。" 迈克对玛丽雅和贝恩德说。

那么怎么得到一个包含数字1、1、2、2、3、3的六位数,并且满足上述条件呢? 3个蓝点
以及怎么得到一个包含数字1、1、2、2、3、3、4、4的八位数,并且也满足上述条件?3个红点

截止日期: 2021.04.22

rus

Внимание — Исправление!

 

«Наш учитель назвал нам в онлайн-чате эти два числа: 112233 и 11223344.
Цифры нужно переставить таким образом, чтобы между двумя единицами стояла одна другая цифра, между двойками стояли две других цифры, между тройками три других и (при красной задаче) между четвёрками четыре других цифры», сказал Майк Марие и Бернду.
Как выглядит шестизначное число, которое содержит цифры 1; 1; 2; 2; 3 и 3 и выполняет выше указанное условие? 3 синих очка
Как выглядит восьмизначное число, которое содержит цифры 1; 1; 2; 2; 3; 3; 4 и 4 и выполняет выше указанное условие? 3 красных очка

ung

„A tanárunk az online-chat-en ezt a két számot adta meg: 112233 és 11223344. A számok számjegyeinek úgy kell állnia, hogy két azonos szám között mindig egy másik számjegy álljon” – mondta Mike Máriának és Berndnek.
Melyik az a hatjegyű szám, ahol a számjegyek 1, 1, 2, 2, 3 és 3 a fenti feltételeknek megfelelőek? 3 kék pont
Melyik az a nyolcjegyű szám, ahol a számjegyek 1, 1, 2, 2, 3, 3, 4 és 4 a fenti feltételeknek megfelelőek? 3 piros pont

frz

"Notre professeur nous a donné ces deux numéros dans le chat en ligne: 112233 et 11223344." Les chiffres des numéros doivent être réarrangés pour qu'il y ait toujours un autre chiffre entre deux chiffres identiques .. ", a déclaré Mike à Maria et Bernd.
Quel est le nombre à six chiffres après les chiffres 1; 1; 2; 2; 3 et 3 et remplit la condition ci-dessus? 3 points bleus
Quel est le nombre à huit chiffres après les chiffres 1; 1; 2; 2; 3; 3; 4 et 4 et remplit la condition ci-dessus? 3 points rouges

esp

"Nuestro profesor nos dijo estos dos números en el chat en línea: 112233 y 11223344. Se supone que las cifras de los números se reordenan de tal manera que siempre hay otra cifra entre dos cifras idénticas...", dijo Mike a María y Bernd.
¿Cuál es el número de seis cifras que contiene los dígitos 1; 1; 2; 2; 3 y 3 y cumple con la condición anterior? 3 puntos azules
¿Cuál es el número de ocho dígitos que contiene las cifras 1; 1; 2; 2; 3; 3; 4 y 4 y cumple con la condición anterior? 3 puntos rojos

en

“Our teacher gave us the following two numbers during our online-chat: 112233 and 11223344. The digits of the numbers should be shifted the way that between two identical digits a different digit is positioned…”, Mike told Maria and Bernd.
What is the six-digit number, that has the digits 1; 1; 2; 2; 3 and 3 and fulfills the upper condition? 3 blue points
What is the eight-digit number, that has the digits 1; 1; 2; 2; 3; 3; 4 and 4 and fulfills the upper condition too? 3 red points

it

“Nostro professore ci ha detto questi due numeri al chat online: 112233 e 11223344. Le cifre devono essere spostate nel modo che entro due cifre uguali sarà sempre messo una delle altre cifre.” Mike diceva a Maria e Bernd.
Qual’è il numero di sei cifre che contiene le cifre 1; 1; 2; 2; 3 e 3 e che soddisfa la condizione di sopra? 3 punti blu
Qual’è il numero di otto cifre che contiene le cifre 1; 1; 2; 2; 3; 3; 4 e 4 e che soddisfa la condizione di sopra? 3 punti rossi

Lösung/solution/soluzione/résultat/Решение:

Die Zahlen sind mit etwas probieren leicht zu finden. blau 231 213, rot 23 421 314, das dies die einzigen sind, bis auf die Tatsache, dass man sie umgekehrt aufschreiben kann, ist schnell gezeigt.
Hier das Beispiel von Ingmar Rubin für n = 31 (Hier aber gibt es sehr viel Möglichkeiten): [15, 27, 16, 4, 23, 8, 20, 1, 4, 1, 7, 29, 21, 18, 8, 19, 15, 3, 7, 16, 24, 3, 30, 22, 26, 17, 31, 20, 23, 27, 9, 28, 18, 25, 21, 19, 11, 14, 5, 10, 9, 29, 12, 17, 5, 24, 22, 13, 11, 6, 10, 26, 14, 30, 2, 12, 6, 2, 31, 25, 28, 13]
Noch mehr zum Langfordproblem findet sich hier: http://www.dialectrix.com/langford.html

Eine weitere schöne Darstellung - von Professor Heinrich Hemme: https://www.spektrum.de/raetsel/das-langford-problem/1788947


Aufgabe 12

Wertungsaufgabe 672

672 duerer a rot

„Mit diesem A fehlen jetzt nicht mehr viel um alle Buchstaben für W O C H E N A U F G A B E zu haben.“, sagte Lisa zu Mike. „Das ist richtig.“
Zur Konstruktion: ABCD ist ein Quadrat der Länge a. (Hier im Beispiel gilt a = 10 cm.) E, F, G, H sind Mittelpunkte der Seiten des Quadrates. I und J sind a/10 von den Eckpunkten entfernt. L liegt a/10 über der Seite CD. Der linke Schenkel und der Quersteg sind a/30 breit. Der rechte Schenkel ist a/10 breit. Die großen Kreise haben einen Radius von a/7 die kleinen Kreise haben einen Radius von a/15.
Wie groß ist der Flächeninhalt des Vierecks GJBC – 3 blaue Punkte. (Ist nicht eingezeichnet.
Wie groß ist der Flächeninhalt des oberen weißen Dreiecks innerhalb des A? - 6 rote Punkte.

Termin der Abgabe 29.04.2021. Срок сдачи 29.04.2021. Ultimo termine di scadenza per l´invio è il 29.04.1921. Deadline for solution is the 29th. April 2021. Date limite pour la solution 29.04.2021. Soluciones hasta el 29.04.2021. Beadási határidő 2021.04.29. 截止日期: 2021.04.29 - 请用徳语或英语回答。

chin

第672题道题

672 duerer a rot

"有了这个A之后,WOCHENAUFGABE这个词中的所有字母就都全了。" 丽莎对迈克说。
"对呀!"

构建一张这样的图: ABCD是一个边长为a的正方形。(这里假设a=10厘米 )。 点E、F、G、H分别是正方形每条边的中点。
点I和J分别和顶点A、B的距离为a/10。点L距离CD边正上方a/10处。大A的左边部分和中间的横儿的宽度都是a/30,右边部分的宽度为a/10。大圆的半径是a/7,小圆半径是a/15。

请问:四边形GJBC的面积是多少?3个蓝点 (在图中没有被标出)
大A内部上半部分的白色三角形的面积是多少?6个红点

截止日期: 2021.04.29

rus

672 duerer a rot

«С этим A теперь уже не так много букв отсутствуют, чтобы иметь все буквы для слова W O C H E N A U F G A B E», сказала Лиза Майку. "Это правильно."
О конструкции: ABCD - это квадрат длины a. (В этом примере а = 10 см.) E, F, G, H - центры сторон квадрата. I и J находятся на расстоянии a/10 от точек A и B. Точка L находится a /10 над стороной CD. Левая сторона и перекладина буквы Дюрера имеют ширину a/30. Правая сторона имеет ширину a/10. Большие окружности имеют радиус a/7, а маленькие окружности имеют радиус a/15.
Какая площадь у четырёхугольника GJBC - 3 синих очка. (Этот четырёхугольник не показан в рисунке.)
Какова площадь верхнего белого треугольника внутри буквы А? - 6 красных очков.

hun

672 duerer a rot

„Ezzel az A betűvel nem hiányzik már sok a WOCHENAUFGABE összes betűjéhez.” – mondta Lisa Mike-nak. „Így van.”
A szerkesztéshez: ABCD egy négyzet, hossza a. (Itt például a = 10 cm.) E, F, G, H a négyszög oldalainak középpontkai. I és J a sarokpontoktól a/10 távolságra állnak. L a CD oldal a/10-én van. A bal szár és keresztrúd a/30 szélesek. A jobb szár a/10 széles. A nagy körök átmerője a/7, a kis köröké a/15.
Mekkora a GJBC négyszög felülete? – 3 kék pont (nincs berajzolva)
Mekkora a felülete a felső fehér háromszögnek az A-n belül? – 6 piros pont

frz

672 duerer a rot

Avec ce A, il ne manque pas grand-chose pour avoir toutes les lettres pour le mot W O C H E N A U F G A B E », a déclaré Lisa à Mike. "C'est exact."
A propos de la construction : ABCD est un carré de longueur a. (Dans cet exemple, a = 10 cm.) E, F, G, H sont les centres des côtés du carré. I et J sont à une distance de a/10 des sommets. L est a/10 au-dessus du côté CD. Le côté gauche et la barre transversale sont large de a/30. Le côté droite mesure a/10 de large. Les grands cercles ont un rayon de a/7 et les petits cercles ont un rayon de a/15.
Quelle est l'aire du carré GJBC - 3 points bleus. (N'est pas illustré.)
Quelle est l'aire du triangle blanc supérieur à l'intérieur du A? - 6 points rouges.

esp

672 duerer a rot

"Con esta A, ya no nos falta mucho para tener todas las letras de W O C H E N A U F G A B E", le dijo Lisa a Mike. "Así es".
Para construir: ABCD es un cuadrado de longitud a. (En el ejemplo, a = 10 cm.) E, F, G, H son los puntos medios de los lados del cuadrado. I y J están a/10 de los vértices. L es a/10 por encima del CD lateral. El lado izquierdo y el lado transversal son a/30 de ancho. El lado derecho es a/10 de ancho. Los círculos grandes tienen un radio de a/7 los círculos pequeños tienen un radio de a/15.
¿Cuál es el área del cuadrilátero GJBC? 3 puntos azules. (No está marcado.)
¿Cuál es el área del triángulo blanco superior dentro de la A? - 6 puntos rojos.

en

Dürer-letter

672 duerer a rot

“With this letter A only a few are missing to form the word W O C H E N A U F G A B E.”, Lisa told Mike. “That is correct.”
The construction: ABCD is a square with the length a. (In our example we have a = 10 cm.) E, F, G, H are centers of the square’s lines. I and J are a/10 away from the edges. L is a/10 above the line CD. The left side and the cross line are a/30 wide. The right side is a/10 wide. The big circles do have a radius of a/7 and the small circles do have a radius of a/15.

How big is the area of the quadrangle GJBC – 3 blue points. (Isn’t drawn into our sketch.)

How big is the area of the upper white triangle inside the A? – 6 red points.

it

672 duerer a rot

„Con questa A non ci manca più tanto per complettare tutte le lettere di WOCHENAUFGABE.” Lisa diceva a Mike. “Hai ragione.”
La costruzione: ABCD è un quadrato della lunghezza degli spigoli a. (Nell’ esempio vale a = 10 cm). E, F, G, H sono i punti mediani dei lati del quadrato. I e J hanno una distanza di a/10 dai vertici. L sta a/10 sopra il lato CD. Il lato sinistro e la traversa hanno uno spessore di a/30. Il lato destro ha uno spessore di a/10. I cerchi grandi hanno un raggio di a/7, quelli piccolo uno di a/15.
Qual’è l’area del quadrilatero GJBC – 3 punti blu (questo quadrilatero non è stato segnato)
Qual’è l’area del triangolo bianco che si trova in alto dentro la A? – 6 punti rossi

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Hans, danke. --> pdf <--


 Gewinner des Buchpreises sind:
Magdalene, Dana M. und Ingmar Rubin, herzlichen Glückwunsch.

Auswertung Serie 56 (rote Liste)

Platz Name Ort Summe Aufgabe
  661 662 663 664 665 666 667 668 669 670 671 672
1. Karlludwig Cottbus 73 6 8 6 4 8 4 8 8 6 6 3 6
1. Günter S. Hennef 73 6 8 6 4 8 4 8 8 6 6 3 6
1. Paulchen Hunter Heidelberg 73 6 8 6 4 8 4 8 8 6 6 3 6
1. Calvin Crafty Wallenhorst 73 6 8 6 4 8 4 8 8 6 6 3 6
1. Frank R. Leipzig 73 6 8 6 4 8 4 8 8 6 6 3 6
1. Maximilian Jena 73 6 8 6 4 8 4 8 8 6 6 3 6
2. Magdalene Chemnitz 72 6 8 6 4 7 4 8 8 6 6 3 6
3. Alexander Wolf Aachen 71 6 8 4 4 8 4 8 8 6 6 3 6
4. Hirvi Bremerhaven 70 3 8 6 4 8 4 8 8 6 6 3 6
5. Ingmar Rubin Berlin 69 6 8 4 4 8 4 8 6 6 6 3 6
5. Reinhold M. Leipzig 69 3 8 6 4 7 4 8 8 6 6 3 6
6. Birgit Grimmeisen Lahntal 68 6 8 6 4 8 4 8 5 6 5 3 5
7. Dana Ingolstadt 67 3 8 4 4 8 4 8 8 6 6 3 5
8. Albert A. Plauen 66 3 8 4 4 8 4 8 8 6 6 3 4
8. Hans Amstetten 66 3 8 4 4 8 4 8 8 4 6 3 6
9. Gerhard Palme Schwabmünchen 65 - 8 6 4 8 4 8 8 6 6 3 4
10. HeLoh Berlin 64 6 8 6 4 7 4 8 - 6 6 3 6
11. Gitta Großsteinberg 52 6 2 6 4 3 4 8 4 - 6 3 6
12. Axel Kästner Chemnitz 51 6 4 4 4 7 4 8 - - 6 3 5
13. Linus-Valentin Lohs Chemnitz 46 6 - 4 4 - 4 8 - 6 6 3 5
14. PC Zerbe Erfurt 35 - - - - - 4 8 8 6 6 3 -
15. Harald Schreiber Köln 34 6 8 4 4 - 4 8 - - - - -
16. Siegfried Herrmann Greiz 30 3 8 6 3 - 4 - - - 6 - -
16. Volker Bertram Wefensleben 30 3 8 - - - 4 - - 6 6 3 -
17. Bernd Berlin 25 - 8 4 4 - 4 - - - 5 - -
18. Kurt Schmidt Berlin 22 3 - 4 - - 4 - 5 - 6 - -
19. Laura Jane Abai Chemnitz 18 3 - - - - 4 8 - - - 3 -
19. Janet A. Chemnitz 18 3 - - - - 4 8 - - - 3 -
19. StefanFinke112 Wittstock/Dosse 18 - - - - - 4 - - - 6 3 5
20. Reka W. Siegerland 15 3 8 - - - 4 - - - - - -
21. Andree Dammann Muenchen 11 - - 4 - - 4 - - - - 3 -
22. Florine Lorenz Chemnitz 10 6 - - - - 4 - - - - - -
22. Josefin Buttler Chemnitz 10 6 - - - - 4 - - - - - -
23. Markus Heinze Dresden 7 - - - - - 4 - - - - 3 -
23. Felix Helmert Chemnitz 7 - - - - - 4 - - - - 3 -
23. Helmut Schneider Su-Ro 7 - - - - - 4 - - - - 3 -
24. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
24. Paula Rauschenbach Chemnitz 6 6 - - - - - - - - - - -
24. A. Türk Chemnitz 6 - - - - - 4 - - - 2 - -
25. Ronja Kempe Chemnitz 4 - - - 4 - - - - - - - -
25. Lotta Seifert Chemnitz 4 - - - - - 4 - - - - - -
25. Gijs Den Haag 4 - - - - - 4 - - - - - -
25. Tim Schiefer Chemnitz 4 - - - - - 4 - - - - - -
25. Lukas Thieme Chemnitz 4 - - - - - 4 - - - - - -
25. Arne Weißbach Chemnitz 4 - - - - - 4 - - - - - -
25. Dora? Dresden 4 - - - - - 4 - - - - - -
25. Tom Straßer Chemnitz 4 - - - - - 4 - - - - - -
25. Rafael Seidel Chemnitz 4 - - - - - 4 - - - - - -
25. Karoline Stingl Chemnitz 4 - - - - - 4 - - - - - -
25. Paula Hartmannsdorf 4 - - - - - 4 - - - - - -
25. Anna Nötzel Dresden 4 - - - - - 4 - - - - - -
25. Frederike Adner Chemnitz 4 - - - - - 4 - - - - - -
25. Kai-Uwe Adner Chemnitz 4 - - - - - 4 - - - - - -
25. Andreas M. Dittersdorf 4 - - - - - 4 - - - - - -
25. Marie Reichelt Chemnitz 4 - - - 4 - - - - - - - -
25. Salomé Jassner Chemnitz 4 - - - - - 4 - - - - - -
25. A. Raupach Mittweida 4 - - - - - 4 - - - - - -
25. Maya Melchert Chemnitz 4 - - - - - 4 - - - - - -
25. Tabea Raupach Chemnitz 4 - - - 4 - - - - - - - -
25. Horst Gauern 4 - - - - - 4 - - - - - -
25. Ronja Schobner Chemnitz 4 - - - - - 4 - - - - - -
25. Sophie Pöschel Chemnitz 4 - - - - - 4 - - - - - -
25. Katja Seidel Chemnitz 4 - - - - - 4 - - - - - -
25. W. Neundorf Ilmenau 4 - - - - - 4 - - - - - -
25. Nele Frank Chemnitz 4 - - - - - 4 - - - - - -
26. Pepe Junghanns Chemnitz 3 3 - - - - - - - - - - -
26. Nagy-Balo Andras Budapest 3 - - - - - - - - - - 3 -
26. W. Gliwa Magdeburg 3 - - - - - - 3 - - - - -
27. Finn Silas Heinrichs Chemnitz 2 - - - - - 2 - - - - - -
27. David Adamczak Chemnitz 2 - - - - - 2 - - - - - -
27. Yannick Schädlich Chemnitz 2 - - - - - 2 - - - - - -
28. Lukas Dathe Chemnitz 1 - - - - - 1 - - - - - -
28. Johanna Zeil Dresden 1 - - - 1 - - - - - - - -

Auswertung Serie 56 (blaue Liste)

Platz Name Ort Summe Aufgabe
  661 662 663 664 665 666 667 668 669 670 671 672
1. Karlludwig Cottbus 60 6 8 4 4 8 4 6 8 3 3 3 3
1. Magdalene Chemnitz 60 6 8 4 4 8 4 6 8 3 3 3 3
1. Frank R. Leipzig 60 6 8 4 4 8 4 6 8 3 3 3 3
1. Günter S. Hennef 60 6 8 4 4 8 4 6 8 3 3 3 3
1. HeLoh Berlin 60 6 8 4 4 8 4 6 8 3 3 3 3
1. Alexander Wolf Aachen 60 6 8 4 4 8 4 6 8 3 3 3 3
1. Maximilian Jena 60 6 8 4 4 8 4 6 8 3 3 3 3
1. Axel Kästner Chemnitz 60 6 8 4 4 8 4 6 8 3 3 3 3
1. Reinhold M. Leipzig 60 6 8 4 4 8 4 6 8 3 3 3 3
1. Ingmar Rubin Berlin 60 6 8 4 4 8 4 6 8 3 3 3 3
1. Calvin Crafty Wallenhorst 60 6 8 4 4 8 4 6 8 3 3 3 3
1. Paulchen Hunter Heidelberg 60 6 8 4 4 8 4 6 8 3 3 3 3
1. Linus-Valentin Lohs Chemnitz 60 6 8 4 4 8 4 6 8 3 3 3 3
1. Hans Amstetten 60 6 8 4 4 8 4 6 8 3 3 3 3
2. Laura Jane Abai Chemnitz 59 6 8 4 3 8 4 6 8 3 3 3 3
2. Janet A. Chemnitz 59 6 8 4 3 8 4 6 8 3 3 3 3
3. Hirvi Bremerhaven 58 6 8 2 4 8 4 6 8 3 3 3 3
4. Dana Ingolstadt 57 6 8 4 4 8 3 4 8 3 3 3 3
4. Albert A. Plauen 57 6 8 4 4 6 3 6 8 3 3 3 3
5. Gitta Großsteinberg 56 6 8 4 4 7 4 6 8 - 3 3 3
6. Gerhard Palme Schwabmünchen 54 - 8 4 4 8 4 6 8 3 3 3 3
7. Birgit Grimmeisen Lahntal 48 6 4 4 4 8 4 6 - 3 3 3 3
8. Bernd Berlin 47 - 8 3 4 8 4 6 8 3 3 - -
9. Kurt Schmidt Berlin 43 6 8 4 4 6 4 - 8 - 3 - -
10. Siegfried Herrmann Greiz 42 6 8 4 3 - 4 - 8 - 3 3 3
11. Florine Lorenz Chemnitz 31 6 8 - - 6 4 6 - 1 - - -
12. Harald Schreiber Köln 30 5 8 4 4 - 3 6 - - - - -
12. StefanFinke112 Wittstock/Dosse 30 6 - - - 8 4 - - 3 3 3 3
13. Josefin Buttler Chemnitz 28 6 6 - - 6 4 6 - - - - -
14. PC Zerbe Erfurt 27 - - - - - 4 6 8 3 3 3 -
15. Dorothea Richter Chemnitz 23 6 - - 3 7 4 - - - 3 - -
16. Volker Bertram Wefensleben 21 6 8 - - - 4 - - - - 3 -
16. Paula Rauschenbach Chemnitz 21 6 - - - - 4 - 8 3 - - -
16. Marie Reichelt Chemnitz 21 - - - 3 6 3 6 - 3 - - -
17. Andree Dammann Muenchen 19 - 8 4 - - 4 - - - - 3 -
18. Reka W. Siegerland 18 6 8 - - - 4 - - - - - -
19. Chiara Röder Chemnitz 17 - - - 4 7 3 - - - 3 - -
20. Antonio Jobst Chemnitz 16 - - - 4 5 4 - - 3 - - -
21. Ronja Kempe Chemnitz 15 - - - 3 7 2 - - - 3 - -
21. Niklas Trommer Chemnitz 15 - - - - 7 2 - - 3 3 - -
22. Nagy-Balo Andras Budapest 14 - 8 - - - - - - 3 - 3 -
23. Jannik Ebermann Chemnitz 13 - - - 2 5 3 - - - 3 - -
23. Oskar Strohbach Chemnitz 13 - - - 4 6 3 - - - - - -
23. Anabel Pötschke Chemnitz 13 - - - - 7 3 - - 3 - - -
23. Adrian Werner Chemnitz 13 - - - 4 - 3 - - 3 3 - -
23. Quentin Steinbach Chemnitz 13 - - - 4 6 3 - - - - - -
23. Maya Melchert Chemnitz 13 6 - - - - 4 - - 3 - - -
24. Jakob Walther Chemnitz 12 - - - 1 5 3 - - - 3 - -
24. Helene Kübeck Chemnitz 12 - - - - 6 3 - - - 3 - -
24. Yannick Schädlich Chemnitz 12 6 - - - - 3 - - - 3 - -
25. Moritz Kinder Chemnitz 11 - - - - 5 3 - - - 3 - -
26. Richard Kästner Chemnitz 10 - - - - - 4 - - - 3 3 -
26. Katja Seidel Chemnitz 10 6 - - - - 4 - - - - - -
26. Pascal Lindner Chemnitz 10 - - - 4 2 4 - - - - - -
26. A. Türk Chemnitz 10 - - - - - 4 - - 3 3 - -
27. Tabea Raupach Chemnitz 9 - - - 3 - 3 - - - 3 - -
27. Pepe Junghanns Chemnitz 9 6 - - - - 3 - - - - - -
27. Paula Anita Beneking Chemnitz 9 6 - - - - 3 - - - - - -
28. Helmut Schneider Su-Ro 7 - - - - - 4 - - - - 3 -
28. Moriz Berlin 7 - - - - - 4 - - 3 - - -
28. Markus Heinze Dresden 7 - - - - - 4 - - - - 3 -
28. Felix Helmert Chemnitz 7 - - - - - 4 - - - - 3 -
28. Adrian Amini Chemnitz 7 - - - 4 - 3 - - - - - -
29. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
29. W. Gliwa Magdeburg 6 - - - - - - 6 - - - - -
30. Henry Hasenknopf Chemnitz 4 - - - - - 4 - - - - - -
30. Lena Wagler Chemnitz 4 - - - - - 4 - - - - - -
30. Frank Römer Frankenberg 4 - - - - - 4 - - - - - -
30. Luna Synnatzschke Chemnitz 4 - - - - - 4 - - - - - -
30. Lotta Seifert Chemnitz 4 - - - - - 4 - - - - - -
30. Amy Zais Chemnitz 4 - - - - - 4 - - - - - -
30. Ole Hering Chemnitz 4 - - - - - 4 - - - - - -
30. Nele Frank Chemnitz 4 - - - - - 4 - - - - - -
30. A. Raupach Mittweida 4 - - - - - 4 - - - - - -
30. Noah Hugo Fischer Chemnitz 4 - - - - - 4 - - - - - -
30. Jolina Trommer Chemnitz 4 - - - - - 4 - - - - - -
30. Leo Langer Chemnitz 4 - - - - - 4 - - - - - -
30. Judith Wagner Chemnitz 4 - - - - - 4 - - - - - -
30. Louis Voigt Chemnitz 4 - - - - - 4 - - - - - -
30. Timon Ruppelt Chemnitz 4 - - - - - 4 - - - - - -
30. Wiebke Mickelthwate Chemnitz 4 - - - - - 4 - - - - - -
30. Linnea Böhm Chemnitz 4 - - - - - 4 - - - - - -
30. Johanna Zeil Dresden 4 - - - 4 - - - - - - - -
30. Alwin Müller Chemnitz 4 - - - - - 4 - - - - - -
30. Finn Silas Heinrichs Chemnitz 4 - - - - - 4 - - - - - -
30. Salomé Jassner Chemnitz 4 - - - - - 4 - - - - - -
30. Nico Plümer Chemnitz 4 - - - - - 4 - - - - - -
30. Josefine Bohley Chemnitz 4 - - - - - 4 - - - - - -
30. Ben Engelmann Chemnitz 4 - - - - - 4 - - - - - -
30. Rocco Fröhlich Chemnitz 4 - - - - - 4 - - - - - -
30. Cornel Szailai Chemnitz 4 - - - - - 4 - - - - - -
30. Elisa Falke Chemnitz 4 - - - - - 4 - - - - - -
30. Sophie Pöschel Chemnitz 4 - - - - - 4 - - - - - -
30. Ronja Schobner Chemnitz 4 - - - - - 4 - - - - - -
30. Kai-Uwe Adner Chemnitz 4 - - - - - 4 - - - - - -
30. Frederike Adner Chemnitz 4 - - - - - 4 - - - - - -
30. Dominique Böttinger Chemnitz 4 - - - - - 4 - - - - - -
30. Anna Nötzel Dresden 4 - - - - - 4 - - - - - -
30. Etienne Thierfelder Chemnitz 4 - - - - - 4 - - - - - -
30. Paula Hartmannsdorf 4 - - - - - 4 - - - - - -
30. Magdalena Richter Chemnitz 4 - - - - - 4 - - - - - -
30. Emelie Frauendorf Rochlitz 4 - - - - - 4 - - - - - -
30. Karoline Stingl Chemnitz 4 - - - - - 4 - - - - - -
30. Nele Stöß Chemnitz 4 - - - - - 4 - - - - - -
30. Mia Bakos Chemnitz 4 - - - - - 4 - - - - - -
30. Lukas Thieme Chemnitz 4 - - - - - 4 - - - - - -
30. Rafael Seidel Chemnitz 4 - - - - - 4 - - - - - -
30. Andreas M. Dittersdorf 4 - - - - - 4 - - - - - -
30. Silas Arnold Chemnitz 4 - - - - - 4 - - - - - -
30. Lilly Schiefer Chemnitz 4 - - - - - 4 - - - - - -
30. Arne Weißbach Chemnitz 4 - - - - - 4 - - - - - -
30. Lilly Barz Chemnitz 4 - - - - - 4 - - - - - -
30. Tim Schiefer Chemnitz 4 - - - - - 4 - - - - - -
31. Amelia Vornic Chemnitz 3 - - - - - 3 - - - - - -
31. Karen Gensch Chemnitz 3 - - - - - 3 - - - - - -
31. Leni Hacker Chemnitz 3 - - - - - 3 - - - - - -
31. Jannes Dressler Chemnitz 3 - - - - - 3 - - - - - -
31. Tom Straßer Chemnitz 3 - - - - - 3 - - - - - -
31. Hannes Jakob Wolf Chemnitz 3 - - - - - 3 - - - - - -
31. Gijs Den Haag 3 - - - - - 3 - - - - - -
31. Leo Carlos Dreßler Chemnitz 3 - - - - - 3 - - - - - -
31. Lilli Fellendorf Chemnitz 3 - - - - - 3 - - - - - -
31. Helena Böse Chemnitz 3 - - - - - 3 - - - - - -
31. Chelsea Scheibner Chemnitz 3 - - - - - 3 - - - - - -
31. Sina Bunge Chemnitz 3 - - - - - 3 - - - - - -
31. Janusz Mühlmann Dittersdorf 3 - - - - - 3 - - - - - -
31. Lowis Rachowski Chemnitz 3 - - - - - 3 - - - - - -
31. Elia Göckeritz Chemnitz 3 - - - - - 3 - - - - - -
31. Jannik Schulz Chemnitz 3 - - - - - 3 - - - - - -
31. Horst Gauern 3 - - - - - 3 - - - - - -
31. Josie Sandig Chemnitz 3 - - - - - 3 - - - - - -
31. Laszlo Csizmadia Chemnitz 3 - - - - - 3 - - - - - -
31. Adrian Dinter Chemnitz 3 - - - - - 3 - - - - - -
31. Michelle Oeser Chemnitz 3 - - - - - 3 - - - - - -
31. Ava Seidel Chemnitz 3 - - - - - 3 - - - - - -
31. Lydia Wagner Chemnitz 3 - - - - - 3 - - - - - -
31. Nelio Anker Chemnitz 3 - - - - - 3 - - - - - -
31. Tabea Pohle Chemnitz 3 - - - - - 3 - - - - - -
31. Lukas Dathe Chemnitz 3 - - - - - 3 - - - - - -
31. W. Neundorf Ilmenau 3 - - - - - 3 - - - - - -
31. Alina Schabacher Chemnitz 3 - - - - - 3 - - - - - -
31. Helene Herzog Chemnitz 3 - - - - - 3 - - - - - -
31. Valentin Dotzauer Chemnitz 3 - - - - - 3 - - - - - -
31. Emily Seidel Chemnitz 3 - - - - - 3 - - - - - -
31. Dora? Dresden 3 - - - - - 3 - - - - - -
31. Mikko Winkler Chemnitz 3 - - - - - 3 - - - - - -
31. Farhnaz Hazrati Chemnitz 3 - - - - - 3 - - - - - -
31. Marco Puschmann Adorf 3 - - - - - 3 - - - - - -
31. Jelsy Nötzold Chemnitz 3 - - - - - 3 - - - - - -
32. Maximilian Dotzauer Chemnitz 2 - - - - - 2 - - - - - -
32. Kolya Brockhaus Chemnitz 2 - - - - - 2 - - - - - -
32. Tim Mücke Chemnitz 2 - - - - - 2 - - - - - -
32. Marlon Adler Chemnitz 2 - - - - - 2 - - - - - -
32. Sophie-Marie Scherzer Chemnitz 2 - - - - - 2 - - - - - -
32. Emilia Haft Chemnitz 2 - - - - - 2 - - - - - -
33. Amanda Albrecht Chemnitz 1 - - - - - 1 - - - - - -
33. Ben Henry Friedrich Chemnitz 1 - - - - - 1 - - - - - -
33. Henriette Bohley Chemnitz 1 - - - - - 1 - - - - - -
33. Pauline Micke Chemnitz 1 - - - - - 1 - - - - - -
33. Doro Kölb Chemnitz 1 - - - - - 1 - - - - - -
33. Lilly Gutschmidt Chemnitz 1 - - - - - 1 - - - - - -
33. David Adamczak Chemnitz 1 - - - - - 1 - - - - - -

 

Задача недели - russisch

Задача недели

exercice de maths de la semaine, math problem of the week, problema di matematica della settimana, सप्ताह के गणित समस्या, математическая задача недели, Ejercicio de matemáticas semanal, 今週の数学問題, בעיה מתמטית של השבוע, مشكلة الرياضيات الأسبوع, 这个周的数学问题, Haftanın matematik problemi, temporäre Problem vun der Woch, μαθηματικό πρόβλημα της εβδομάδας, math tatizo la wiki, 這個週的數學問題,

Каждую неделю в пятницу на этом сайте предлагается для решения новая задача по математике. Решение задачи нужно прислать не позже четверга следующей недели. Задачи имеют разную степень сложности (синие — легче, красные — более сложные). Решение задачи должно быть полным и раскрывать последовательность всех действий при ее решении. Окончательный ответ без описания действий при решении задачи не рассматривается.
Результат решения задачи оценивается при полном ответе — синими или красными очками от 2-х до 12-и.
Каждая серия состоит из 12-и задач, затем определяются победители данного этапа. Набранное количество очков публикуется --> здесь.
После окончания серии среди участников, которые заняли места с 1 по 10, разыгрываются 3 приза в виде книг. Книжные призы предоставляет Buchdienst Rattei
(
книжная служба Раттей ) г. Кемница.

С удовольствием рассматриваем предлагаемые Вами задачи.

Решение отправить до 20.01.2022 по электронному адресу: wochenaufgabe[at]schulmodell.eu или wochenaufgabe[at]gmx.de

немецкиий ← --> английский <--  --> итальянский <-- --> французский <-- --> эспанский <-- --> венгерский <--

Cерия 59

Задача 699:

 

«Твой сон на прошлой неделе заставил меня записать ещё несколько чисел мистера Фибоначчи», сказала Лиза Майку. «Вот первые 25:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 и двадцатьпятое число - 75025. Самое красивое в последнем числе то, что это 25-е число также заканчивается на 25.
Такого раньше не было, кроме первого числа 1 и пятого числа 5.»
Найти другое число Фибоначчи, чей «номер» совпадает с окончанием. 3 синих очка.
Можно также последовательно складывать числа Фибоначчи:
1 + 1 = 2, 1 + 1 + 2 = 4; 1 + 1 + 2 + 3 = 7, 1 + 1 + 2 + 3 + 5 = 12, ...
Закономерность не так уж сложно увидеть. Какая она и как её доказать?
(1 + 4 = 5 красных очков)

 


Решение можно отправить также здесь  --> здесь <--

Пожалуйста, при заполнении бланка не забывайте указать Ваше полные имя и фамилию, для того чтобы можно было Вам коректно зачислить очки.
Новости рассылку можете выписывать здесь: --> Newsletter. <--

В настоящее время имеется около 2000 лиц и организаций, которые получают задачи посредством  Newsletter.

-> Загадка символов - новая каждую неделю, с оценкой <--

Возможно также послать решение по почте. Письмо нужно отправить не позже дня сдачи (почтовый штемпель) по адресу:

Thomas Jahre
Chemnitzer Schulmodell (модельная школа)
Stollberger Straße 25
09119 Chemnitz
Deutschland/Germany
  QR-Code
Aufgabe der Woche qr

Serie 55

Serie 55

Hier werden die Aufgaben 649 bis 660 veröffentlicht.

Aufgabe 1

649. Wertungsaufgabe

Maria las in einem Buch über die Hauptstädte Europas, war aber nicht sehr aufmerksam und so dachte sie an den letzten Urlaub im Jahr 2019 zurück. Sie hatte sich mit 5 Mädchen (Dana, Frieda, Lena, Ronja und Salome) angefreundet.. Jede von Ihnen übernachtete in einer anderen Etage (erste, zweite, dritte, vierte, fünfte bzw. sechste). Die Zimmernummern waren 11, 12, 13, 14, 15 und 16. Jede Etage hatte einen anderen Farbton (rot, grün, blau, gelb, grau und orange.)

  1. Friedas Etage war rot.. Salome, deren Zimmernummer um 2 größer ist als die von Maria, wohnte weiter unten als Frieda.
  2. Das Mädchen aus der fünften Etage wohnte im Zimmer 14.
  3. Die sechste Etage war grau. Ronja, die nicht in der sechsten Etage wohnte, hatte die Zimmernummer 13.
  4. Lena übernachtete in der vierten Etage.
  5. Dana hatte nicht die Zimmernummer 12.
  6. Das Mädchen aus dem Zimmer 16 wohnte nicht in der ersten Etage.
  7. Das Mädchen aus Zimmer 15 übernachtete in der Etage, die orange war.
  8. Die gelbe Etage war direkt über der blauen Etage.

Wer, wohnte in welcher Etage (Zahl und Farbe) und hatte welche Zimmernummer? 6 blaue Punkte

Name

Zimmernummer

Etagennummer

Farbe

Maria

     

Dana

     

Frieda

     

Lena

     

Ronja

     

Salome

     

Nun aber musste Maria doch wieder in ihr Buch schauen. Maria las die Kapitel über Athen, Berlin, Paris, Prag und Madrid. Zu Beginn der Kapitel (Seiten: 11, 29, 33, 41 und 57) war ein schönes Foto zu sehen. Auch wer die Fotos gemacht hatte, war zu lesen. Da gab es die Vornamen Alfons, Greta, Helena, Jana und Leo, sowie die Familiennamen: Astor, Holland, Menger, Sonne und Titan.

  1. Das Foto von Athen war vor dem Bild des Fotografen Alfons Holland, wobei die Seitenzahl von dessen Foto nicht durch 3 teilbar war.
  2. Helena hatte das Bild von Paris gemacht.
  3. Janas Foto, es war nicht Berlin, befand sich nicht auf Seite 33.
  4. Greta, die nicht Sonne hieß, machte das Foto für die Seite 11.
  5. Auf Seite 29 war das Foto von Madrid.
  6. Der Nachname Astor war auf Seite 41 zu lesen, aber nicht der Vorname Leo.
  7. Unter dem Bild von Prag stand der Name Titan.

Wer (Vor- und Zuname) fotografierte welche Stadt? Auf welchen Seiten befanden sich die Bilder? 6 rote Punkte

Stadt

Seite

Vorname

Familienname

Athen

     

Berlin

     

Paris

     

Prag

     

Madrid

     

--> Vorlage als pdf <--

Termin der Abgabe 24.09.2020. Срок сдачи 24.09.2020. Ultimo termine di scadenza per l´invio è il 24.09.1920. Deadline for solution is the 24th. September 2020. Date limite pour la solution 24.09.2020. Soluciones hasta el 24.09.2020. Beadási határidő 2020.09.24.

rus

Задача по логике

Мария читала в какой-то книге о столицах европейских стран. Однако, она была не очень внимательна, вспоминала последний отпуск в 2019-ом году. Тогда она подружилась с 5-ю девушками (Дана, Фрида, Лена, Роня и Саломе). Каждая из них ночевала на другом этаже (первый, второй, третий, четвёртий, пятый и шестой). Их комнаты имели следующие номера: 11, 12, 13, 14, 15 и 16. Каждый этаж был оформлен в другом цвете (красный, зелёный, синий, жёлтый, серый и оранжевый).

  1. Фрида ночевала на красном этаже. Саломе жила ниже Фриды и номер её комнаты была на два меньше чем у Марии.
  2. Девушка с пятого этажа жила в комнате номер 14.
  3. Шестой этаж имел серый цвет. Роня, которая жила не на шестом этаже, имела комнату с номером 13.
  4. Лена ночевала на четвёртом этаже.
  5. Дана не имела кмнату с номером 12.
  6. Девушка с номером 16 не жила на первом этаже.
  7. Девушка из номера 15 ночевала на оранжевом этаже.
  8. Жёлтый этаж находился непосредственно над синим этажом.

Кто жил на каком этаже (номер и цвет этажа) и какой номер имела её комната?
6 сийних очков

Имя

Номер комнаты

Номер этажа

Цвет этажа

Мария

     

Дана

     

Фрида

     

Лена

     

Роня

     

Саломе

     

Однако теперь Мария должна была снова посмотреь в свою книгу. Мария прочитала глвы про Афины, Берлин, Париж, Прагу и Мадрид. В начале этих глав (страницы 11, 29, 33, 41 и57) можно было увидеть красивую фотографию. Можно было также читать, кто эти фтографии сделал. Там были имена Альфонс, Грета, Хелена, Яна и Лео и фамилии Астор, Голланд, Менгер, Зонне и Титан.

  1. Фото Афиных находилось перед картиной фотографа Альфонса Голланда, при чём номер страницы его фото не делился через 3.
  2. Хелена сделала фото Парижа.
  3. Фотография Яны не была из Берлина и не находилась на странице 33.
  4. Грета, фамилия которрой не была Зонне, сделала Фото для страницы 11.
  5. На странице 29 была фотография Мадрида.
  6. На странице 41 была фамилия Астор, имя Лео там не было.
  7. Под фотографией Праги стояла фамилия Титан.

Кто (имя и фамилия) сфотографировал какой город? На каких страницах находились фотографии? 6 красных очков

Город

Страница

Имя

Фамилия

Афины

     

Берлин

     

Париж

     

Прага

     

Мадрид

     

ung

Logikai feladat

Mária Európa fővárosairól olvasott, de nem valami figyelmesen, mert az előző, 2019-es évi nyaralására gondolt vissza. 5 lánnyal (Dana, Frieda, Lena, Ronja und Salome) barátkozott össze. Mindegyikük másik emeleten szállt meg. A szobaszámok a következők voltak: 11, 12, 13 ,14, 15 és 16. Minden emeletet más színnel jelöltek meg (piros, zöld, kék, sárga, szürke és narancssárga).

  1. Frida emelete piros színű volt. Soloma, akinek a szobaszáma kettővel nagyobb volt, mint Máriáé lentebb lakott, mint Frieda.
  2. A lány az 5.emeletről a 14-es szobában lakott.
  3. A hatodik emelet szürke színű volt. Ronja, aki nem a hatodikon lakott, a 13-as szobát lakta.
  4. Léna a negyediken éjszakázott.
  5. Dana lakott a 12-es szobában.
  6. A lány a 16-os szobából nem az első emeleten lakott.
  7. A lány a 15-ös szobából azon az emeleten töltötte az éjszakát, amelyik narancssárga volt.
  8. A sárga színű emelet közvetlenül a kék emelet felett volt.

Ki, melyik emeleten és melyik szobában lakott? 6 kék pont

Ekkor Máriának mégiscsak bele kellett újból pillantania a könyvébe. Elolvasott egy-egy fejezetet Athénról, Berlinről, Prágáról és Madridról. A fejezetek elején (11., 29., 33., 41. és 57. oldal) egy-egy szép fényképet láthatott. Azt is el lehetett olvasni, ki készítette a fotókat. Keresztnevük szerint egy Alfons, Greta, Helene, Jana és Leo, vezetéknevük alapján Astor, Holland, Meger, Sonne és Titan.

  1. Athénról Alfons Holland készített fényképet, de ez az oldalszám nem volt osztható hárommal.
  2. Helena fotózta le Berlint.
  3. Jana fényképe, ami nem Berlinről készült, a 33. oldalon található meg.
  4. Greta, akinek a vezetékneve nem Sonne, csinálta a képet a 11. oldalon.

5.A 29. oldalon volt a fotó Madridról.

  1. Astor neve a 41. oldalon volt olvasható, de a családi neve nem Leo.
  2. Prága képe alatt Titan neve állt.

Ki (teljes névvel) melyik várost fényképezte? Melyik oldalon találhatók a fotók? 6 piros pont

frz

Exercice de logique

Maria a lu dans un livre sur les capitales de l'Europe mais n'était pas très attentive et a donc repensé aux dernières vacances en 2019. Elle se lie d'amitié avec 5 filles (Dana, Frieda, Lena, Ronja et Salome), chacune d'elles restant à un étage différent (premier, deuxième, troisième, quatrième, cinquième ou sixième). Les numéros de chambre étaient 11, 12, 13, 14, 15 et 16. Chaque étage était d'une nuance différente (rouge, vert, bleu, jaune, gris et orange).

  1. Le premier étage de Frieda était rouge et Salomé, dont le numéro de chambre est 2 plus grand que celui de Maria, habitait des étages plus bas que Frieda.
  2. La fille du cinquième étage vivait dans la chambre 14.
  3. Le sixième étage était gris. Ronja, qui n'habitait pas au sixième étage, avait la chambre numéro 13.
  4. Lena habitait au quatrième étage.
  5. Dana n'avait pas le numéro de chambre 12.
  6. La fille de la chambre 16 n'habitait pas au premier étage.
  7. La fille de la chambre 15 habitait à l'étage orange.
  8. L'étage jaune était directement au-dessus du l'étage bleu.

Qui habitait à quel étage (numéro et couleur) et avait quel numéro de chambre? 6 points bleus

Nom

Numéro Chambre

Étage

Couleur

Maria

     

Dana

     

Frieda

     

Lena

     

Ronja

     

Salome

     

Mais maintenant, Maria devait revoir son livre. Maria a lu les chapitres sur Athènes, Berlin, Paris, Prague et Madrid. Au début des chapitres (pages 11, 29, 33, 41 et 57) il y avait une jolie photo.

Il était également possible de lire qui avait pris les photos. Il y avait les prénoms Alfons, Greta, Helena, Jana et Leo, ainsi que les noms de famille: Astor, Holland, Menger, Sonne et Titan.

  1. La photo d'Athènes était avant la photo du photographe Alfons Holland, et le numéro de page de sa photo n'était pas divisible par 3.
  2. Helena a pris la photo de Paris.
  3. La photo de Jana, ce n'était pas Berlin, n'était pas à la page 33.
  4. Greta, dont le nom n'était pas le Sonne, a pris la photo de la page 11.
  5. À la page 29 se trouvait la photo de Madrid.
  6. Le nom de famille Astor était à la page 41, mais pas le prénom Leo.
  7. Sous l'image de Prague se trouvait le nom de Titan.

Qui (prénom et nom) a photographié quelle ville? Sur quelles pages figuraient les images? 6 points rouges

Ville

Page

Prénom

Nom

Athènes

     

Berlin

     

Paris

     

Prague

     

Madrid

     

esp

problema de lógica

María ha leído en un libro sobre las capitales europeas, pero no estaba muy atenta entonces se acordó de las vacaciones pasadas del año 2019. Se había hecho amiga con cinco chicas (Dana, Frieda, Lena, Ronja y Salome). Cada una de ellas pernoctaba en otra planta (primera, segunda, tercera, cuarta, quinta, sexta). Los números de habitación eran 11, 12, 13, 14, 15 y 16. Cada planta tuvo otro color (rojo, verde, azul, amarillo, gris y naranja).

  1. La planta de Frieda era roja. Salome, cuyo número de habitación era por 2 más grande que la habitación de María, vivió debajo de Frieda.
  2. La chica de la quinta planta estaba alojado en la habitación número 14.
  3. La sexta planta era gris. Ronja, que no estaba alojado en la sexta planta, tenía la habitación número 13.
  4. Lena trasnochaba en la cuarta planta.
  5. Dana no tenía la habitación número 12.
  6. La chica de la habitación número 16 no estaba alojado en la primera planta.
  7. La chica de la habitación número 15 trasnochaba en la planta naranja.
  8. La planta amarilla era directamente por encima de la planta azul.

¿Quién trasnochaba en cuál planta (número y color) y tenía cuál número de habitación? 6 puntos azules. 

nombre

número de habitación

planta

color

María

     

Dana

     

Frieda

     

Lena

     

Ronja

     

Salome

     

Pues bien, María otra vez echó un vistazo en su libro. Leyó los capítulos sobre Atenas, Berlín, París, Praga y Madrid. A comienzos de los capítulos (páginas: 11, 29, 33, 41 y 57) se veían fotografías bellas. También se podía ver quién tomó las fotos. Había los nombres Alfons, Greta, Helena, Jana y Leo así como los apellidos Astor, Holland, Menger, Sonne y Titan. 

  1. La foto de Atenas era delante de la imagen del fotógrafo Alfons Holland, a lo cual el número de página no era divisible por tres. 
  2. Helena sacó la foto de París.
  3. La foto de Jana no se encuentra en la página 33 y se tiró en Berlín. 
  4. Greta tomó la foto para la página 11, pero no tiene el apellido “Sonne”.
  5. La foto de Madrid está en la página 29.
  6. El apellido “Astor” se puede leer en la página 41, pero no va con el nombre Leo.
  7. Debajo de la imagen de Praga está escrito el apellido “Titan”. 

¿Quién (nombre y apellido) ha fotografiado cuál capital y en cuáles páginas están las imágenes? 6 puntos rojos

capital

página

nombre

apellido

Atenas

     

Berlín

     

París

     

Praga

     

Madrid

     

en
Logic puzzle
Maria read a book about the capitals of Europe, wasn’t very attentive and thought about her last holiday in 2019. She became friends with five girls (Dana, Frieda, Lena, Ronja und Salome). Everyone of them slept on another hotel floor (first, second, third, fourth, fith and sixth). The room numbers were 11, 12, 13, 14, 15 and 16. Every floor did have another color (red, green, blue, yellow, grey and orange.)

  1. Frieda‘s floor was red.. Salome, whose room number was about 2 bigger than the one of Maria, lived further down than Frieda.
  2. The girl from the fifth floor lived in room 14.
  3. The sixth floor was grey. Ronja, who didn’t live on the sixth floor, had room number 13.
  4. Lena slept on the fourth floor.
  5. Dana did not have room number 12.
  6. The girl from room 16 did not live on the first floor.
  7. The girl from room 15 slept on the orange floor.
  8. The yellow floor was directly above the blue floor.

Who lived on which floor (number and color) and had which room number? 6 blue points

Name

room number

floor

color

Maria

     

Dana

     

Frieda

     

Lena

     

Ronja

     

Salome

     

Now Maria had to look back at her book again. Maria read the chapter about Athen, Berlin, Paris, Prague and Madrid. At the beginning of the chapter (pages: 11, 29, 33, 41 and 57) was a nice photo. There was even written who did the photos. There were the names Alfons, Greta, Helena, Jana and Leo, and there surnames: Astor, Holland, Menger, Sonne and Titan.

  1. The photo from Athen could be found before the photo of the photographer Alfons Holland. The page number of his photo could not be divided by 3.
  2. Helena had taken a picture of Paris.
  3. Jana‘s photo, it wasn’t Berlin, was not on page 33.
  4. Greta, who wasn’t named “Sonne”, took the photo on page 11.
  5. On page 29 was the photo of Madrid.
  6. The surname Astor could be read on page 41, but it was not from the photographer named Leo.
  7. Under the picture from Prague stood the name Titan.

Who (name and surname) did take a photo of which city? On which pages could the pictures be found? 6 red points

city

page

name

surname

Athen

     

Berlin

     

Paris

     

Prague

     

Madrid

     

it

Compito di logica

Maria leggeva in un libro delle capitali di Europa, però non era molto attenta, ma pensava alle sue ultime vacanze nel 2019.

Aveva fatto amicizia con 5 ragazze (Dana, Frieda, Lena, Ronja e Salome). Ognuna di loro soggiornava in un altro piano (primo, secondo, terzo, quarto, quinto, sesto). I numeri delle stanze erano 11, 12, 13, 14, 15 e 16. Ogni piano era dipinto in un altro colore (rosso, verde, blu, giallo, grigio, arancione).

1.Il piano di Frieda era rosso. Salome, del quale numero di stanza era 2 più alto di quello di Maria, abitava più in giù che Frieda.

  1. La ragazza del quinto piano abitava in stanza numero 14.
  2. Il sesto piano era grigio. Ronja, che non abitava al sesto piano, aveva il numero 13.
  3. Lena soggiornava al quarto piano.
  4. Dana non aveva il numero 12.
  5. La ragazza di stanza 16 non abitava al primo piano.
  6. La ragazza di stanza numero 15 soggiornava al piano che era arancione.
  7. Il piano giallo stava direttamente sopra quello dipinto in blu.

Chi abitava in quale piano (colore e numero) ed aveva quale numero di stanza) – 6 punti blu

nome

numero di stanza

numero del piano

colore

Maria

     

Dana

     

Frieda

     

Lena

     

Ronja

     

Salome

     

Prima o poi, Maria continuava a studiare suo libro. Leggeva i capitoli su Atene, Berlino, Parigi, Praga e Madrido. All’ inizio dei capitoli (pagine 11, 29, 33, 41 e 57) c’era sempre una bella foto. Si poteva anche leggere chi aveva fatto la foto. C’ erano I nomi Alfons, Greta, Helena, Jana e Leo ed i cognomi Astor, Holland, Menger, Sonne e Titan.

  1. La foto di Atene era del fotografo Alfons Holland. Il numero della pagina dov’era non era divisibile per 3.

2.Helena aveva fatto la foto di Parigi.

  1. La foto di Jana, non Berlino, non si trovava su pagina 33.
  2. Greta, che non si chamava Sonne, faceva la foto su pagina 11.
  3. Su pagina 29 c’era la foto di Madrido.
  4. Il cognome Astor era su pagina 41, ma non il nome Leo.
  5. Sotto la foto di Praga stave il nome Titan.

Chi (nome e cognomen) faceva la foto di quale città? Su quale pagina si trovavano le foto? – 6 punti rossi

città

pagina

nome

cognome

Athen

     

Berlin

     

Paris

     

Prag

     
 

Lösung/solution/soluzione/résultat:

Musterlösungen von Hirvi, danke --> pdf <--

und Reinhold M.

bei "blau" folgt sofort aus 1.
 Frieda rot,
also wegen 3.
 Frieda nicht 6.,
und aus 3.
 Ronja 13
sowie aus 2.
 14 5.
Damit bleiben mit 1. für Salome und Maria nur
 Maria 14 5.,
 Salome 16 - wegen 6. nicht 1.
Weiter gilt nach 4.
 Lena 4.,
womit nach 1. für die Etagen endgültig nur bleibt
 Salome 2.,
 Frieda 3.
sowie wegen 3.
 Ronja 1.,
also
 Dana 6. - wegen 3. grau.
Damit bleibt für 7. nur Lena:
 Lena 15 4. orange,
sowie für 8. die 1. und die 2.:
 Ronja 1. blau,
 Salome 2. gelb,
also
 Maria grün.
Wegen 5. ist schließlich
 Dana 11,
 Frieda 12,
so dass das "blaue Ergebnis" zusammengefasst lautet:

Maria - Zi. 14 - 5. Et. - grün
Dana - Zi. 11 - 6. Et. - grau
Frieda - Zi. 12 - 3. Et. - rot
Lena - Zi. 15 - 4. Et. - orange
Ronja - Zi. 13 - 1. Et. - blau
Salome - Zi. 16 - 2. Et. - gelb

Bei "rot" folgt aus 1. mit 6. - und 5. - sofort
 Madrid 29 Alfons Holland
und mit 4.
 Athen 11 Greta.
Mit 2.
 Paris Helena
folgt aus 3. - und 7. -
 Prag Jana Titan,
also
 Berlin Leo
und mit 6.
 Paris 41 Helena Astor.
Damit folgt schließlich aus 3. und 4.
 Berlin 33 Leo Sonne,
und für Greta bleibt der Name Menger sowie für Prag Seite 57, so dass das "rote Ergebnis" zusammengefasst lautet:

Athen - S. 11 - Greta Menger
Berlin - S. 33 - Leo Sonne
Paris - S. 41 - Helena Astor
Prag - S. 57 - Jana Titan
Madrid - S. 29 - Alfons Holland


Aufgabe 2

Wertungsaufgabe 650

 

650

„Was machst du mit den Quadraten im Koordinatensystem?“, fragte Mike. „Die 6 Quadrate sollen mir bei den Übungen mit linearen Funktionen helfen.“, erwiderte Lisa. „Pass auf“.
Blaue Aufgabe. Finde das kleinste Quadrat – eine Seite auf der y-Achse – in das alle 6 Quadrate hineinpassen. Die Diagonalen des gesuchten Quadrats sind Bilder von linearen Funktionen mit je einer Gleichung y=f(x)=mx+n. Wie heißen die Funktionsgleichungen? Welche der kleinen Quadrate haben keine Punkte mit den Diagonalen gemeinsam? 5 blaue Punkte.
Rote Aufgabe: Es sind drei lineare Funktionen (y=f(x)=mx+n) zu finden, deren Bilder alle 6 kleinen Quadrate „trennen“. Jede Gerade berührt mindestens ein kleines Quadrat. und m und n sind ganze Zahlen. Die Angabe einer Lösungsvariante reicht. 6 rote Punkte.

Termin der Abgabe 08.10.2020. Срок сдачи 08.10.2020. Ultimo termine di scadenza per l´invio è il 08.10.2020. Deadline for solution is the 8th. October 2020. Date limite pour la solution 08.10.2020. Soluciones hasta el 08.10.2020. Beadási határidő 2020.10.08.

rus

650

«Что ты делаешь с квадратами в координатной системе?», спросил Майк. «Эти 6 квадратов должны мне помогать при упряжнениях по линейным функциям», ответила Лиза. «Смотри».
Синяя задача: Найди наименьший квадрат — одна сторона на оси у — в который укладываются все 6 квадратов. Диагонали искомого квадрата - графики линейных функций с уравнениями у=f(х)=mx+n. Как гласят эти уравнения? Какие из маленьких квадратов не имеют общих точек с диагоналами? 5 синих очков.
Красная задача: Нужно найти 3 линейных функций (у=f(х)=mx+n), графики которых «разделят» все 6 маленьких квадратов. Каждая прямая касается по крайней мере одного маленького квадрата, а m и n являются целыми числами. Достаточно указать один вариант решения. 6 красных очков.

ung

650

„Mit teszel a négyzetekkel a koordináta rendszerben?” – kérdezte Mike. „ A 6 négyzet a lineáris feladatok gyakorlásában segít.” –válaszolta Lisa. „Figyelj csak!”
Kék feladat: találd meg a legkisebb négyzetet – egyik oldala az y tengelyre fekszik – amibe mind a 6 négyzet belefér. A keresett négyzet átlói a lineáris függvények ezen egyenletének y=f(x)=mx+n ábrázolásai. Hogy hívják a függvényt? A kis négyzetek közül melyiknek nincs közös pontja az átlókkal? 5 kék pont
Piros feladat: Három lineáris egyenlet y=f(x)=mx+n található, ha mind a 6 kis négyszög képeit „szétszedjük”. Minden egyenes érint legalább egy kis négyzetet. Valamint m és n egész számok. Egy megoldási változat megadása elegendő. 6 piros pont.

frz

650

"Que fais-tu avec les carrés dans le système de coordonnées?", a demandé Mike. "Les 6 carrés devraient m'aider avec les exercices des fonctions linéaires", répondit Lisa. "Fais attention".
Exercice bleue. Trouvez le plus petit carré - un côté sur l'axe des y - dans lequel s'inscrivent les 6 carrés. Les diagonales du carré que vous recherchez sont des images de fonctions linéaires, chacune avec une équation y = f(x) = mx + n. Comment s'appellent les équations fonctionnelles? Lequel des petits carrés n'a aucun point en commun avec les diagonales? 5 points bleus.
Exercice rouge: Il y a trois fonctions linéaires (y = f(x) = mx + n) à trouver, dont les images «séparent» les 6 petits carrés. Chaque ligne droite touche au moins un petit carré, et m et n sont des nombres entiers. Il suffit de préciser une solution possible .. 6 points rouges.

esp

650

“¿Qué estás haciendo con los cuadrados en el sistema de coordenadas?”, preguntó Mike. “Quiero que los 6 cuadrados me sirvan en los ejercicios con funciones lineales”, replicó Lisa. “Mira”.
Tarea azul. Encuentra el cuadrado más pequeño – con un canto al eje de las ordenadas – en el que caben todos los seis cuadrados. Las líneas diagonales del cuadrado buscado son imágenes de funciones lineales con una ecuación de la forma y=f(x)=mx+n en cada caso. ¿Cómo se llaman las ecuaciones funcionales? ¿Cuáles de los cuadrados pequeños no tienen puntos comunes con las líneas diagonales? 5 puntos azules.
Tarea roja: Hay que encontrar tres funciones lineales (y=f(x)=mx+n) cuyas imágenes “separan” todos los seis cuadrados. Cada línea recta roza al menos un cuadrado pequeño. m y n son números enteros. Es suficiente indicar una sola variante para solucionar el problema. 6 puntos rojos. 

en

650

„What are you doing with all the squares in the coordinate system?“, asked Mike. „The 6 squares should help me with my exercise about linear functions.“, answered Lisa. „Have a look“.
Blue task. Find the smallest square – one side on the y-axis – in which all 6 squares do fit in. The diagonals of the square we search are pictures of linear functions with an equation each y=f(x)=mx+n. How are the function equations named? Which of the small squares do not have shared points with the diagonal? 5 blue points.
Red task: Three linear functions (y=f(x)=mx+n) can be found, whose pictures “devide” all 6 small squares. Every line touches at least one small square. m and n are integers. It is enough if you find one variety of the solutions. 6 red points.

it

650

„Cosa stai facendo coi quadrati nel sistema di coordinate?“, chiedeva Mike. „I sei quadrati mi sono un aiuto per gli esercizi con funzioni lineari.“, Lisa replicava. „Stai attento“.
Compito blu: Trova il quadrato piú piccolo - un lato deve essere situato sull‘asse y - nel quale entrino tutti i sei quadrati. Le diagonali di questo quadrato sono immagini di funzioni linerari, ognuna dell’ equazione y=f(x)=mx+n. Quale sono queste equazioni? Quale dei quadrati piccoli non hanno punti comuni con le diagonali? 5 punti blu
Compito rosso: si trovino tre funzioni lineari (y=f(x)=mx+n), di quale le immagini „dividono“ itutti i sei quadrati piccoli. Ogni retta tocca almeno uno dei quadrati e „m“ e „n“ sono numeri interi. Basta una variante di soluzione. 6 punti rossi.

Lösung/solution/soluzione/résultat:

Zwei Musterlösungen, die sich im roten Teil unterscheiden, danke.
Von Calvin -->pdf<-- und Hans -->pdf<--


Aufgabe 3

Wertungsaufgabe 651

 

Vorabveröffentlichung Wochenaufgabe 651

651

„Ich habe mit dieser Zeichnung etwas Interessantes entdeckt“, sagte Maria zu ihrem Bruder. „Lass hören“.
Zwei Seiten des blauen Quadrats (a = 2cm) wurden nach rechts bzw. nach oben verlängert. BE=CF=3a.
Der Flächeninhalt des roten Quadrats EFGH ist m mal größer als der Flächeninhalt des Quadrates ABCD. Berechne die natürliche Zahl m. 6 blaue Punkte.
Man kann eine entsprechende Konstruktion auch mit einem anderen regelmäßigen n-Eck beginnen und die Verhältnisse der Flächeninhalte ermitteln. Außer n=4 – siehe Bild – gibt es nur zwei Werte für n, so dass die passende Zahl m eine natürliche Zahl ist. Welche n-Ecke sind das und wie groß ist das passende m? Für die Berechnung gibt es 2x5=10 rote Punkte.

Termin der Abgabe 15.10.2020. Срок сдачи 15.10.2020. Ultimo termine di scadenza per l´invio è il 15.10.1920. Deadline for solution is the 15th. October 2020. Date limite pour la solution 15.10.2020. Soluciones hasta el 15.10.2020. Beadási határidő 2020.10.15.

rus

651

«Этим рисунком я открыла чего-то интересного», сказала Мария своему брату. «Расскажи!»
Две стороны синего квадрата (а=2см) были удлинены вправо и соответственно вверх. BE=CF=3a. Площадь красного квадрата EFGH в m раз больше квадрата ABCD. Рассчитай натуральное число m. 6 синих очков.
Можно соответствующую конструкцию сделать также с другим правильным n-угольником и рассчитать отношения площадей.
Кроме для n=4 – смотри рисунок – имеются только два значения для n такие, чтобы подходяшее число m было натуральным числом. Какие эти n-угольники и какой тогда m?
Для правильного расчёта получите 2х5=10 красных очков.

ung

651

„Felfedeztem valami érdekeset ezen a rajzon.“ – mondta Mária a bátyjának. „Na, halljuk.“
A kék négyzet (a= 2cm) két oldala balra és felfelé meg lett hosszabbítva. BE=CF=3a. A piros négyzet területe m-szer nagyobb, mint az ABCD négyszögé. Számolja ki a m természetes számot. 6 kék pont
Egy másik szabályos n-szöggel elkezdve is meg lehet állapítani a megfelelő szerkesztést és a a terület arányait.
Kivéve n=4 (lásd az ábrán), itt csak két érték lehetséges, hogy a megfelelő m szám természetes legyen. Melyik n-szög ez és mekkora az ehhez tartozó m?
A jó számításért 2x5, azaz 10 piros pont jár.

frz

651

«J'ai découvert quelque chose d'intéressant dans ce dessin», dit Maria à son frère. "vas-y, dis-moi".
Deux côtés du carré bleu (a = 2 cm) ont été prolongés vers la droite et vers le haut. BE = CF = 3a.
L'aire du carré rouge EFGH est m fois plus grande que l'aire du carré ABCD. Calculez le nombre naturel m. 6 points bleus.
Une construction correspondante peut également être démarrée avec un autre n-gon régulier et les proportions des surfaces peuvent être déterminées. En plus de n = 4 - voir l'image - il n'y a que deux valeurs pour n, de sorte que le nombre correspondant m est un entier naturel. Quels sont ces n-gons et quelle est ce nombre m correspondant?
Pour le calcul, il y a 2x5 = 10 points rouges

esp

651

“Con este dibujo he descubierto una cosa interesante”, le dijo María a su hermano. “¡Pues anda, cuéntame!”
Se han prolongado dos lados del cuadrado azul (a=2cm) hacia la derecha o sea hacia arriba. BE=CF=3a. El área del cuadrado rojo EFGH es m veces más grande que el área del cuadrado ABCD. Calcula el número natural m. 6 puntos azules.
Se puede formar una construcción análoga a partir de otro polígono regular y calcular las proporciones de las áreas. Aparte de n=4 (véase a la imagen) solo hay dos resultados que pueden ser n para que el número correspondiente sea un número natural. ¿Cuáles polígonos son y cuán grande es el número m correspondiente? Para el cálculo se reciben 2x5=10 puntos rojos. 

en

651

„I found something interesting while working on this drawing“, Maria told her brother. „Tell me!“.
Two sides of the blue square (a = 2cm) were extended to the right and to the top. BE=CF=3a.
The area of the red square EFGH is m times bigger than the area of the square ABCD. Calculate the whole number “m”. 6 blue points.
You can start this construction with another regular n-figure with edges and calculate the areas’ relations. Except for n=4 – on the picture – there are only two values n, so that the fitting number “m” is a whole number. Which n-figures with edges are these and what is the fitting “m”?
For the calculation you will get 2x5=10 red points.

it

651

„Con quest‘ illustrazione ho scoperto una cosa interessante”, Maria diceva a suo fratello. “Fammi sentire!”.
Due lati del quadrato blu (a = 2 cm) venivano prolungati a destra rispettivamente in alto. BE=CF=3a. L’ area del quadrato EFGH è m volte più grande di quella del quadrato ABCD. Calcola il numero naturale m – 6 punti blu.
Si può iniziare una costruzione corrispondente anche con altri poligoni (n angoli) regolari per poi calcolare la relazione m delle aree. Tranne per n=4 - come nel disegno – esistono solo altre due quantità per n per le quale m sia un numero natural. Quale poligoni sono e qual’e il valore del m rispondente? – Per la calcolazione vengono date 2x5=10 punti rossi.

Lösung/solution/soluzione/résultat:

Musterlösung von Maximilian, danke. --> pdf <--


Aufgabe 4

Wertungsaufgabe 652

652

„Auch in dieser Konstruktion verbirgt sich ein Geheimnis“, ist sich Mike sicher. „Da bin ich aber gespannt“, meinte Lisa.
Mike hatte zuerst ein gleichseitiges Dreieck (a = 4 cm) gezeichnet. Dann hatte er Umkreis und Inkreis des Dreiecks gezeichnet.. Die beiden ergeben einen Kreisring. Anschließend hatte er das mit dem gezeigten Quadrat (a = 4cm) ebenso gemacht. Wieder hatte er einen Kreisring aus Um- und Inkreis erhalten. Beim Vergleich der Flächeninhalte der Kreisringe war er sehr erstaunt. Warum wohl? 6 blaue Punkte.
Gilt das erstaunliche Ergebnis auch für andere regelmäßige n-Ecke mit a = 4cm? Wie groß muss a gewählt werden, wenn der Kreisring einen Flächeninhalt von 1000 cm² haben soll? (3+3 rote Punkte)

Termin der Abgabe 05.11.2020. Срок сдачи 05.11.2020. Ultimo termine di scadenza per l´invio è il 05.11.2020. Deadline for solution is the 5th. November 2020. Date limite pour la solution 05.11.2020. Soluciones hasta el 05.11.2020. Beadási határidő 2020.11.05.

rus

652

Майк убеждён: «И в этой конструкции скрывается какая-то тайна». «Интересно, мне любопытно посмотреть», сказала Лиза.
Майк сначало нарисовал равносторонний треугольник (a = 4 см). Потом он добавил к нему описанную и вписанную окружности. Между ними получается кольцо. Затем он поступил аналогично с изображённым квадратом (a = 4 см). Опять он получил кольцо между описанной и вписанной окружностями. При сравнении кольцов он очень удивился. Почему же?
6 синих очков.
Получается ли этот удивительный результат также для других равномерных n-угольников при a = 4 см?
Каким нужно выбрать a для того, чтобы кольцо имело площадь 1000 см²?
(3+3 красных очков)

hun

652

„Ebben a szerkesztésben is rejlik egy titok.“ – ebben biztos Mike. „Na, erre kíváncsi vagyok.“ – mondta Lisa. Mike először egy egyenlő szárú háromszöget (a= 4 cm) rajzolt. Aztán a háromszög belsejét és külsejét érintő köröket. Ezek egy körgyűrűt alkotnak. Végül ugyanezt elvlgezte az ábrázolt négyzettel (a = 4 cm) is. Ismét kapott egy körgyűrűt a belső és külső körökből. A körgyűrűk területének összehasonlításakor nagyon meglepődött. Miért? 6 kék pont
Igaz ez a meglepő eredmény miden szabályos n-szögre? Milyen hosszú a szakaszt kell venni, hogy a körgyűrű területe 1000 cm² legyen? (3+3) pontot ér.

frz

652

'Il y a aussi un secret caché dans cette construction', Mike est sûr. «Je suis très enthousiaste», a déclaré Lisa.
Mike a d'abord dessiné un triangle équilatéral (a = 4 cm). Puis il avait dessiné la circonférence et le cercle intérieur du triangle, les deux formant un anneau circulaire. Puis il a fait de même avec le carré indiqué (a = 4cm). Encore une fois, il avait un anneau circulaire composé d'un cercle intérieur et d'un cercle intérieur. En comparant les surfaces des anneaux circulaires, il était très étonné. Pour quoi? 6 points bleus.
Le résultat étonnant s'applique-t-il également à d'autres n-coins réguliers avec a = 4cm? Que doit être a pour que l'anneau circulaire ait une superficie de 1000 cm²? (3 + 3 points rouges)

esp

652

“En esta construcción también se esconde un secreto”, Mike tiene seguro. “Entonces estoy curioso por saber qué es”, responde Lisa.
Principalmente, Mike había dibujado un triángulo equilátero (a = 4 cm). Después había dibujado circunferencia y el círculo interior. Entre los dos círculos se manifestó un aro.
A continuación, hizo lo mismo con el cuadrado mostrado (a= 4 cm). Otra vez resultó un aro entre la circunferencia y el círculo interior. Al comparar las áreas de los dos aros estaba muy sorprendido. ¿Porqué? 6 puntos azules.
¿Este resultado sorprendente también vale para otros polígonos regulars con a= 4 cm? ¿Cuál valor debe tener a para que el aro resultante mida el área de 1000 cm²? 3+3 puntos rojos.

en

652

„This construction does hide a secret too.“, Mike is very sure. „I’m excited.“, answered Lisa.
Mike first drew an equilateral triangle (a = 4 cm). Then he drew the circumcircle and the inner circle of the triangle. Both created a ring. Next he did the same thing with the square shown in the picture on the left (a = 4cm). Again he got a ring out of circumcircle and inner circle. When he compared the areas of the rings he was quite astonished. Why? 6 blue points.
Is the astonishing result true for other n-edges with a = 4cm? How big must a be, if the ring should have an area of 1000 cm²? (3+3 red points)

it

652

“Anche dentro questa costruzione è nascosto un segreto”, Mike era convinto. “Allora sono curiosa”, rispondeva Lisa.
Mike aveva disegnato per primo un triangolo equilatero (a=4 cm) per poi costruire il suo circondario e cerchio interno. Questi due formano un anello circolare. Poi ha rifatto la stessa cosa col quadrato che vedete nel disegno (a = 4cm). E di nuovo ha ricevuto un anello circolare dal circondario e cerchio interno. Paragonando le aree dei due anelli circolari era molto stupefatto. Sai perchè? – 6 punti blu
Quel risultato stupefacente, vale anche per altri poligoni regolari con a=4 cm? È come si deve scegliere la misura di a perchè l’ anello circolare abbia un’ area di 1000 cm2 – 3+3 punti rossi.

Lösung/solution/soluzione/résultat:

Lösungen  von Ingmar Rubin --> pdf <-- ud Reinhold M.. danke

ich beginne wieder ich gleich allgemein.

Jedes reguläre n-Eck besitzt bekanntlich einen Mittelpunkt, der der gemeinsame Umkreis- und Inkreismittelpunkt ist, und lässt sich in n Dreiecke zerlegen, deren Eckpunkte jeweils zwei nebeneinanderliegende Eckpunkte des n-Ecks und der Mittelpunkt sind. Die Schenkel dieser gleichschenkligen Dreiecke haben die Länge des Umkreisradius ru, und ihre Höhe die des Inkreisradius ri. Damit gilt nach dem Satz des Pythagoras mit der Seitenlänge a des n-Ecks
 ri^2 + (a/2)^2 = ru^2
- die genauen Längen in Abhängigkeit von n benötigen wir also wieder nicht. Denn mit dem Umkreisinhalt Au
 Au = Pi ru^2
und dem Inkreisinhalt Ai
 Ai = Pi ri^2
folgt für den gesuchten Flächeninhalt des Kreisrings Ar
 Ar = Au - Ai
    = Pi (ru^2 - ri^2)
    = Pi (a/2)^2
    = Pi/4 a^2.
Die Flächeninhalte sind also für alle n gleich ("rot 1"), insbesondere auch beim gleichseitigen Dreieck und beim Quadrat, und zwar für a = 4 cm gleich 4 Pi, d.h. ca. 12,57 cm^2 ("blau").
Und aus
 Ar = 1000 cm^2
folgt
 a = Wurzel(4000/Pi) = 20 Wurzel(10/Pi),
d.h. a muss knapp 35,7 cm sein, damit der Flächeninhalt des Kreisrings 1000 cm^2 beträgt ("rot 2").


Aufgabe 5

Wertungsaufgabe 653

653 blau

„Das sieht aus wie ein buntes Quadrat mit Ohren“, sagte Maria zu ihrem Bruder Bernd. „Da hast du recht, aber darum soll es nicht gehen.“
ABCD ist ein Quadrat mit a = 10 cm. E und F halbieren die Seiten. EG = HF = x= 4 cm. Zum Schluss noch die Kreise mit jeweils r = 2 cm. Wie groß sind die Flächeninhalte der roten, gelben, blauen und grünen Flächen? (= prozentualer Anteil an der Fläche von ABCD) 10 blaue Punkte
Nimmt man zwei solcher Quadrate, so lässt sich durch „falten“ ein interessanter Körper „bauen“.

653 rot

Wie groß ist dessen Volumen – mit Herleitung einer Formel unter Verwendung von a, r und x gibt es 12 rote Punkte.

Termin der Abgabe 12.11.2020. Срок сдачи 12.11.2020.Ultimo termine di scadenza per l´invio è il 12.11.2020. Deadline for solution is the 12th. November 2020. Date limite pour la solution 12.11.2020. Soluciones hasta el 12.11.2020. Beadási határidő 2020.11.12.

rus

653 blau

«Это выглядит как пёстрый квадрат с ушами», сказала Мария своему брату Бернд. «Ты права, но не в этом дело».
ABCD является квадратом с длиной a = 10 см. E и F делят стороны пополам. EG = HF = x = 4 см. Наконец ещё круги - каждый с радиусом r = 2 см.
Какие значения имеют площади красных, жёлтых, синих и зелёных плоскостей (в процентных долях от площади ABCD)? 10 синих очков.
Если взять два таких квадрата, то из них можно путём «сложения» «построить» интересное тело.

653 rot
Какой у него объём ? — с выводом формулы, содержащей a, r и x получите 12 красных очков.

 hun

653 blau

„Ez úgy néz ki, mint egy színes négyzet fülekkel.“ –mondta Mária a bátyjának. „Igazad van, de nem erről van szó.“
ABCD egy a = 10 cm oldalú négyzet. E és F felezik az oldalakat. EG = HF = x= 4 cm. Végezetül a körök mindegyike r = 2 cm. Mekkora a területe a piros, sárga, kék és zöld területeknek? (Százalékos megadás az ABCD területének) 10 piros pont
Ha kettő ilyen négyszöget vesz az ember és meghajtogatja egy érdekes testet hozhat létre.

653 rot

Mekkora ennek a térfogata – egy képlet levezetésével a, r és x-ből 12 pontot ér.

fr

653 blau

"Cela ressemble à un carré coloré avec des oreilles", a déclaré Maria à son frère Bernd. "Tu as raison, mais ce n'est pas le point."
ABCD est un carré avec a = 10 cm. E et F coupent les côtés en deux. EG = HF = x = 4 cm. Enfin les cercles avec r = 2 cm chacun. Quelle est la superficie des zones rouges, jaunes, bleues et vertes? (= pourcentage de la surface de l'ABCD) 10 points bleus
Si on prend deux de ces carrés, on peut «construire» un corps intéressant en le «pliant».

653 rot

Quelle est son volume - si une formule est dérivée à l'aide de a, r et x, il y aura 12 points rouges.

esp

653 blau

“Esto se ve como un cuadrado colorido con orejas”, le dijo María a su hermano Bernd. “Tienes razón, pero el ejercicio tiene otro asunto.”
ABCD es un cuadrado con a = 10 cm. Los lados del cuadrado son partidos por la mitad por E y F. EG = HF = x = 4 cm. Al final se esbozan los círculos cada vez con r = 2 cm. ¿Qué tamaño tienen las áreas de los planos rojos, amarillos, azules y verdes? Se busca el tanto por ciento del plano del cuadrado ABCD. 10 puntos azules.

653 rot

Con dos semejantes cuadrados plegados se puede construir un cuerpo interesante. ¿De qué tamaño es su volumen? Para la derivación de una fórmula con a, r y x se reciben 12 puntos rojos.

en

653 blau

„ This looks like a colored square with ears“, Maria told her brother Bernd. „You are right. But that is not the point.“
ABCD is a square with a = 10 cm. E and F divide both sides in half. EG = HF = x= 4 cm. In the end we have the circles with r = 2 cm. How big are the areas of the red, yellow, blue and green fields? (= percentage of the area ABCD) 10 blue points.

653 rot

If you take two such squares, you can create an interesting figure through folding. How big is the volume – with a deduction of the formula using a, r and x you will get 12 red points.

it

653 blau

“Sembra essere un quadrato colorato con le orecchie”, Maria diceva a suo fretello Bernd. “Hai ragione, ma questo non importa.”
ABCD è un quadrato con a = 10 cm. E e F bisecano i lati. EG = HF = x = 4 cm. Alla fine I cherchi con r = 2 cm. Quale sono le aree delle superficie rosse, gialle, blu e verdi? (= percentuale della superficie di ABCD) – 10 punti blu
Prendendo due di questi quadrati, piegandole si può costruire un solido molto interessante.

653 rot

Qual’è il suo volume? – Con la derivazione della formula che contenga a, r e x vengono dati 12 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Calvin, danke. --> pdf <--
Eine "deutlich einfachere" Formel für das Volumen lässt sich finden, wenn statt des Radius, gleich die Höhe des blauen Trapezes gegeben wird, wer Zeit hat, kann da ja mal drüber schauen.


Aufgabe 6

Wertungsaufgabe 654

654 (nach Anregung durch R. S.)

„Was hast du denn in deinem Beutel, das klappert ja doch sehr.“, frage Lisa ihren Freund Mike.
In dem Beutel befinden sich 10 Kugeln, die mit den Zahlen von 1 bis 10 nummeriert sind.
Eine Kugel wird gezogen. Wie groß ist die Wahrscheinlichkeit, dass es sich um eine Primzahl bzw. eine ungerade Zahl handelt.? (2 blaue Punkte) Zwei Kugeln, deren Zahlen direkt aufeinanderfolgen, werden vorher herausgenommen, dann wird die Frage noch mal gestellt. Die Antwort lautet dann, die Wahrscheinlichkeiten sind gleich. Welche Kugelpaare könnte man entfernen?- 2 rote Punkte für das Finden aller möglichen Paare.

Termin der Abgabe 19.11.2020. Срок сдачи 19.11.2020. Ultimo termine di scadenza per l´invio è il 19.11.2020. Deadline for solution is the 19th. November 2020. Date limite pour la solution 19.11.2020. Soluciones hasta el 19.11.2020. Beadási határidő 2020.11.19.

rus

«Что у тебя в твоём мешочке, ведь это уж очень стучит», спросила Лиза своего друга Майка.
В мешочке находятся 10 шариков, прономерованных числами с 1 до 10.
Вытаскивают один шарик. Какова вероятность, что на нём простое число или соответственно нечётное число? (2 синих очка)
Вытаскивают заранее два шарика с непосредственно последовательными номерами . Затем выше указанный вопрос ставится снова. Ответ гласит, что вероятности равны.
Какие пары шариков можно было удалить для такого ответа?
(2 красных очка, если найдёте все возможные пары.)

hun

„Mi van a táskádban, ami így zörög?” – kérdezte Liza a barátját, Mike-ot.
A táskában 10 golyó van, melyek 1-től 10-ig számozottak. Egy golyót kihúzunk. Mekkora a valószínűsége annak, hogy ez prímszám, vagy páratlan szám lesz. (2 kék pont)
Eztán két olyan golyót húzunk ki, melyek egymást követő számúak, aztán még egyszer feltesszük a kérdést. A válasz úgy hangzik, hogy a valószínűség egyforma. Melyik golyópárt húztuk ki? 2 piros pont minden lehetséges párért.

fr

(suite à la suggestion de R. S.)
"Qu'est-ce que tu as dans ton sac? Ça claque beaucoup." demanda Lisa à son ami Mike.
Il y a 10 boules dans le sac, numérotées de 1 à 10.
Une boule est retirée. Quelle est la probabilité que ce soit un nombre premier ou un nombre impair? (2 points bleus)
Deux boules dont les numéros se succèdent sont préalablement retirées du sac, puis la question est à nouveau posée, la réponse est alors que les probabilités sont égales.
Quelles paires de boules peut-on retirer? - 2 points rouges pour trouver toutes les paires possibles.

esp

(por inspiración de R. S.)
“¿Qué es lo que tienes en tu bolsa? Se nota el chacoloteo”, le preguntó Lisa a su amigo Mike.
En la bolsa están 10 bolas numerados de 1 a 10. Se saca una bola. ¿Cuál es la probabilidad que se trata de un número primo o bien un número impar? (2 puntos azules)
Ahora, antes de hacer la pregunta otra vez, se sacan dos bolas cuyos números se suceden directamente. La respuesta será que la probabilidad de sacar un número primo y la de sacar un número impar son iguales. ¿Cuáles parejas de bolas se podrían excluir? Por encontrar todas las parejas posibles se reciben 2 puntos rojos.

en

(after a suggestion from R. S.)
„What do you have in your bag, it really rattles.“, Lisa asked her friend Mike.
In the bag are 10 spheres, which are numbered with numbers from 1-10.
One sphere gets pulled out. How big is the probability, that it will be a prime number resp. an odd number? (2 blue points) Two spheres, whose numbers follow each other, are removed before, then the upper question is asked again. The answer then is, that the probabilities are the same. Which pairs of spheres could be removed?- 2 red points for finding all possible pairs.

it

(Secondo un’ idea di R.S.)
“Cosa hai in questo sachetto? Strepita parecchio.”, Lisa chiedeva a suo amico Mike.
Nel sacchetto si trovano 10 palline, numerate da 1 a 10. Viene tirato una delle palline. Con quale probabilità si tratta di un numero primo o dispari? – 2 punti blu.
Due palline, portando numeri seguenti, vengono tolti del sachetto, poi si rifa la domanda di prima e la risposta è che la probabilità non si è cambiata. Quale paia di palline si potrebbero togliere per questo? – 2 punti rossi per trovare tutti i paia possibili.

Lösung/solution/soluzione/résulta/Решениеt:

Unter den Zahlen 1; 2; ..., 10 gibt es vier Primzahlen: 2; 3; 5 und 7. Die Wahrscheinlichkeit also 4/10 = 40 %. Ungerade Zahlen sind es fünf: 1; 3; 5; 7; 9. Die Wahrscheinlichkeit also 5/10 = 50 %.
Enfernt man das Paar 9; 10, so verbleiben als Primzahlen 2; 3; 5 und 7 und als ungerade Zahlen 1; 3; 5; 7, somit liegt die Wahrscheinlichkeit für  das Ziehen einer Primzahl oder einer ungeraden Zahl bei je 50 %.
Enfernt man das Paar 8; 9, so verbleiben als Primzahlen 2; 3; 5 und 7 und als ungerade Zahlen 1; 3; 5; 7, somit liegt die Wahrscheinlichkeit für  das Ziehen einer Primzahl oder einer ungeraden Zahl bei je 50 %.
Bei jedem anderen denkbaren Paar verbleiben immer 4 ungerade Zahlen, aber nur 3 oder gar 2 Primzahlen. Somit ist die Wahrscheinlichkeit für  das Ziehen einer Primzahl oder einer ungeraden Zahl nicht gleich.


Aufgabe 7

Wertungsaufgabe 655

655

„Schau mal, ich habe in dem Dreieck ABC auf zwei Wegen das größte Quadrat konstruiert, unter der Bedingung, dass eine Seite des Quadrates auf der Seite AB liegt..“, sagte Bernd zu Mike.
Ist das Dreieck ABC, von dem Umfang und Flächeninhalt zu ermitteln sind, wirklich rechtwinklig (3+2+2 blaue Punkte)
Bernd hat zum einen das grüne Hilfsquadrat verwendet und zum anderen das blaue Quadrat und den Punkt L, der durch die Höhe ermittelt wird, genutzt.. Sind die beiden Konstruktionen nur im Beispieldreieck richtig oder gilt das für jedes Dreieck ABC? 7 rote Punkte für eine vollständige Beweisführung.

Termin der Abgabe 26.11.2020. Срок сдачи 26.11.2020. Ultimo termine di scadenza per l´invio è il 26.11.2020. Deadline for solution is the 26th. November 2020. Date limite pour la solution 26.11.2020. Soluciones hasta el 26.11.2020. Beadási határidő 2020.11.26.

rus

655

«Посмотри-ка, в треугольнике ABC я сконструировал двумя путями максимальный квадрат при условии, что одна сторона квадрата находится на стороне AB», сказал Бернд Майку.
Является ли треугольник ABC, для которого нужно определить периметр и площадь, действительно прямоугольным? (3+2+2 синих очков).
Бернд использовал с одной стороны зелёный вспомогательный квадрат и с другой стороны синий квадрат вместе с точкой L, которая определяется вершиной.
Правильны ли обе конструкции только для данного примера треугольника или имеет ли это место для каждого треугольника ABC? 7 красных очков для полного доказательства.

hun

655

„Nézd csak, az ABC háromszögben két módon is megszerkesztettem a legnagyobb négyszöget azzal e feltétellel, hogy egy oldala a négyszögnek az AB oldalon fekszik.” – mondta Bernd Mike-nak.
Az ABC háromszög kerületéből és területéből kiszámítva tényleg jobbszögű? (3+2+2 kék pont)
Bernd az egyikhez a zöld segédnégyszöget, a másikhoz a kék négyszöget és az L pontot, amely a csúcson halad át, használta. Mindkét szerkesztés csak a példaháromszögben helyes, vagy érvényes minden ABC háromszögre? 7 piros pont egy teljes igazolásért.

fr

655

Regardes, j'ai construit le plus grand carré du triangle ABC de deux manières, à condition qu'un côté du carré soit du côté AB .. », dit Bernd à Mike.
Le triangle ABC, à partir duquel la circonférence et l'aire doivent être déterminées, est-il vraiment rectangle ? (3 + 2 + 2 points bleus)
Bernd a utilisé le carré auxiliaire vert d'une part et le carré bleu et le point L, qui est déterminé par la hauteur, d'autre part. Les deux constructions sont-elles correctes uniquement dans l'exemple de triangle ou est-ce que cela s'applique à chaque triangle ABC? 7 points rouges pour une preuve complète.

esp

655

“Mira, aquí tengo un triángulo ABC. Dentro del triángulo, he construido el cuadrado más grande posible en dos maneras, bajo la condición de que un lado del cuadrado se encuentre al lado AB del triángulo”, le dijo Bernd a Mike.
Calcula área y perímetro del triángulo ABC y averigua si realmente esté rectangular. (3+2+2 puntos azules).
Por una parte, Bernd ha utilizado el cuadrado auxiliar verde y por otra parte ha trabajado con el cuadrado azul y el punto L que se averigua por la altura. ¿Las dos construcciones son correctas sólo en el ejemplo proyectado del triángulo ABC o son válidos para todos los triángulos ABC posibles? Para la prueba completa se reciben 7 puntos rojos.

en

655

„Look I constructed the biggest square inside the triangle ABC using two different ways. The condition was that that one side of the square lies on the line AB…”, Bernd told Mike.
Is the square ABC really right-angled? You have to find its area and perimeter too. (3+2+2 blue points)
Bernd on the one side used the green assistance square and on the other side the blue square and the point L, which gets calculated through the height. Are both constructions only true for the example triangle or for every triangle ABC? 7 redpoints for a full line of argument.

it

655

“Guarda, ho costruito in due modi diversi dentro il triangolo ABC il quadrato più grande nel modo che uno dei suoi lati sia situato sul lato AB.”, Bernd diceva a Mike. È veramente rettangolare il triangolo ABC, del quale siano da calcolare circonferenza e area? (3+2+2 punti blu).
Una volta, Bernd ha usato il quadrato verde e l’altra volta il quadrato blu più il punto L che si trova usando l’altezza. Queste due costruzioni, funzionano solo in quell caso particolare del triangolo esemplare o anche per triangoli ABC qualsiasi? – 7 punti rossi per un raziocinio complete.

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Hans, danke. --> pdf <--


Aufgabe 8

Wertungsaufgabe 656

656

„Das ist ein schöner Körper, den du gezeichnet hast.“, sagte Mike zu Bernd. „Ja, der gefällt mir auch, wobei ich zuerst einen noch etwas anderen hatte, beginnend mit einem Würfel statt des Prismas ABCDEF.“, erwiderte Bernd.
Wenn der Körper in der Mitte ein Würfel ist (a =10 cm) und alle Seitenflächen, die zu sehen sind, den gleichen Flächeninhalt haben sollen, wie groß sind dann die Oberfläche und das Volumen des zusammengesetzten Körpers? (2 + 4 blaue Punkte)
Wie groß sind die Oberfläche und das Volumen des abgebildeten Körpers, wenn AB=BS2=AS2= a = 10 cm lang ist und die Flächeninhalte aller sichtbaren Seitenflächen gleich groß sein sollen? - 6 rote Punkte

Termin der Abgabe 03.12.2020. Срок сдачи 03.12.2020. Ultimo termine di scadenza per l´invio è il 03.12.2020. Deadline for solution is the 3th. December 2020. Date limite pour la solution 03.12.2020. Soluciones hasta el 03.12.2020. Beadási határidő 2020.12.03.

rus

656

«Это красивое тело, которое ты нарисовал», сказал Майк Бернду. «Да, мне оно тоже нравится, причём сначала я предположил немного другое тело, начиная с кубиком вместо призмы ABCDEF», ответил Бернд.
Если тело в середине кубик (a =10 см) и все видимые боковые плоскости обладают одинаковой площадью, какие в таком случае значения имеют тогда поверхность и объём составного тела? (2 + 4 синих очков).
Каковы поверхность и объём изображённого тела, если AB =BS2=AS2= a = 10 см и площади всех видимых боковых плоскостей равны между собой? (6 красных очков). Все треугольники изображённого тела равносторонние.

hun

656

„Nagyon szép ez a test, amit rajzoltál.” – mondta Mike Berndnek. „Igen, nekem is tetszik, bár először másvalamit akartam elkezdeni egy kockával az ABCDEF hasáb helyett.” - válaszolta Bernd.
Ha a test a kocka közepén (a =10 cm) és minden látható oldalfelületnek egyforma a területe, mekkora a felülete és a térfogata az összeállított testnek? (2+4 kék pont)
Mekkora a felülete és a térfogata annak a testnek, amelynek AB=BS2=AS2= a = 10 cm hosszú és a területe minden látható oldalfelületnek egyenlő? 6 piros pont

fr

656

« C'est une belle figure que tu as dessiné. », dit Mike à Bernd. "Oui, j'aime ça aussi, même si au début j'en avais une légèrement différente, en commençant par un cube au lieu du prisme ABCDEF", a répondu Bernd.
Si la figure au milieu est un cube (a = 10 cm) et que toutes les surfaces latérales visibles doivent avoir la même surface, quelle est la surface et le volume de la figure assemblée? (2 + 4 points bleus)
Quelle est la taille de la surface et le volume de la figure représentée, si AB =BS2=AS2 = a = 10 cm et la surface de toutes les surfaces latérales visibles doit être la même? - 6 points rouges

esp

656

“Es un cuerpo bello que has esbozado”, le dijo Mike a Bernd. “Sí, a mí me gusta también a lo cual principalmente lo tenía un poco diferente, comenzado con un cubo en vez de un prisma ABCDEF”, replicó Bernd.
Si el cuerpo en el medio es un cubo (a = 10 cm) y todos los planos laterales visibles tienen el mismo área - ¿de qué tamaño son la superficie y el volumen del cuerpo compuesto? (2 + 4 puntos azules)
Si AB =BS2=AS2 = a = 10 cm y las áreas de todos los planos laterales visibles son del mismo tamaño, ¿cuánto miden el área y el volumen del cuerpo proyectado? 6 puntos rojos.

en

656

“That’s a nice figure, that you’ve drawn.”, Mike told Bernd. “Yes, I like it too, although I had a different one before, beginning with a cube instead of the prism ABCDEF.”, answered Bernd.
If the figure in the middle is a cube (a =10 cm) and all side areas, which are visible, should have the same area, how big would the face and the volume of the newly formed figure be? (2 + 4 points)
How big are face and volume of the pictured figure, if AB =BS2=AS2 = a = 10 cm and the area of all visible side areas have to be the same size? - 6 red points 

it

656

“Hai disegnato un bel solido”, Mike diceva a Bernd. “Piace anche a me; bensì per primo avevo uno diverso che invece col prisma ABCDEF iniziava con un cubo”, replicava Bernd.
Se il solido al centro è un cubo (a = 10 cm) e tutte le superficie laterali visibili devono avere la stessa area, quale sono poi la superficie ed il volume del solido composto? – 2 + 4 punti blu
Quale sono la superficie ed il volume del solido mostrato nel disegno, nel caso che sia AB=BS2=AS2 = a = 10 cm e che tutte le superficie laterali visibili abbiano la stessa misura? – 6 punti rossi

Lösung/solution/soluzione/résultat/Решение:

Musterlösungen von Paulchen --> pdf <-- und Reinhold M, danke
im Fall des Würfels als Mittelkörper hat jede Seitenfläche des Würfels und damit jede Seitenfläche des Gesamtkörpers den Flächeninhalt A1
 A1 = a^2,
und der Gesamtkörper wird durch 12 gleichgroße Flächen begrenzt - 4 Quadrate und 2 * 4 = 8 Dreiecke -, so dass für seine Oberfläche Ablau
 Ablau = 12 A1 = 12 a^2
gilt. Da jedes der 8 Dreiecke die gleiche Grundlinie a und den gleichen Flächeninhalt A1 = a^2 hat, ist auch die Höhe h1 zur Spitze S1 bzw. S2 für alle Dreiecke gleichlang, und mit
 A1 = 1/2 a h1
folgt
 h1 = 2a.
Sei nun beispielsweise M2 der Fußpunkt der Höhe h2 der unteren Pyramide in S2 und A' der Fußpunkt der Höhe h1 des Dreiecks AS2B in S2, so gilt (Pythagoras)
 h2^2 + M2A'^2 = h1^2.
Da diese Argumentation für alle Seiten gilt, liegt also M2 im Mittelpunkt des Basisquadrats der Pyramide - analog natürlich auch bei der oberen - (die Pyramiden sind also gerade, alle Dreiecke sind gleichschenklig), so dass
 M2A' = a/2
und damit
 h2 = Wurzel(h1^2 - M2A'^2) = Wurzel((2a)^2 - (a/2)^2) = 1/2 Wurzel(15) a
folgt. Das Volumen VP4 einer Pyramide ist damit
 VP4 = 1/3 A1 h2 = 1/6 Wurzel(15) a^3
und mit dem Würfelvolumen
 VW = a^3
das Volumen Vblau des Gesamtkörpers
 Vblau = VW + 2 VP4 = 1/3 (3 + Wurzel(15)) a^3.
Im Würfelfall sind also der Oberflächeninhalt Ablau des zusammengesetzten Körpers 1200 cm^2 und sein Volumen Vblau 1000/3 (3 + Wurzel(15)), d.h. ca. 2290,994 cm^3.

Im abgebildeten Fall haben wie oben alle hier 6 Seitendreiecke die gleiche Grundlinie a und den gleichen Flächeninhalt, also auch gleichlange Höhen h1 - ich verwende teilweise die selben Bezeichnungen wie oben -, und zunächst ist bekannt, dass das Dreieck AS2B gleichseitig ist, so dass (Pythagoras)
 h1 = Wurzel(a^2 - (a/2)^2) = 1/2 Wurzel(3) a
folgt. Damit gilt für den Flächeninhalt A1 aller 6 Dreiecke und damit auch aller 3 Rechtecke
 A1 = 1/2 a h1 = 1/4 Wurzel(3) a^2.
Damit folgt zunächst für die Oberfläche Arot des Gesamtkörpers
 Arot = 9 A1 = 9/4 Wurzel(3) a^2.
Weiter folgt analog oben mit beispielsweise dem Fußpunkt M2 der Höhe h2 der unteren Pyramide in S2 und dem Fußpunkt A' der Höhe h1 des Dreiecks AS2B in S2 (Pythagoras)
 h2^2 + M2A'^2 = h1^2.
Da diese Argumentation für alle Seiten gilt, liegt also M2 im Mittelpunkt des gleichseitigen Basisdreiecks der Pyramide - analog natürlich auch bei der oberen - (die Pyramiden sind also reguläre Tetraeder, alle Dreiecke sind gleichseitig), so dass - ABC hat die gleiche Höhe h1 wie die identischen Seitendreiecke, und alle Höhen schneiden sich in einem Punkt, der die Höhen im Verhältnis 1:2 teilt -
 M2A' = 1/3 h1 = 1/6 Wurzel(3) a
und damit
 h2 = Wurzel(h1^2 - M2A'^2) = Wurzel(3/4 a^2 - 1/12 a^2) = 1/3 Wurzel(6) a
folgt. Das Volumen VP3 einer Pyramide ist damit
 VP3 = 1/3 A1 h2 = 1/12 Wurzel(2) a^3.
Weiter gilt mit der Höhe b = BE = CF = AD des dreiseitigen Prismas für den Inhalt der rechteckigen Seitenflächen
 A1 = 1/4 Wurzel(3) a^2 = a b,
folglich
 b = 1/4 Wurzel(3) a.
Demzufolge gilt für das Volumen VP des Prismas ABCDEF
 VP = A1 b = 3/16 a^3
und das Volumen Vrot des Gesamtkörpers
 Vrot = VP + 2 VP3 = 1/48 (9 + 8 Wurzel(2)) a^3.
Im abgebildeten Fall sind also der Oberflächeninhalt Arot des zusammengesetzten Körpers 225 Wurzel(3), d.h. ca. 389,71 cm^2, und sein Volumen Vrot 125/6 (9 + 8 Wurzel(2)), d.h. ca. 423,202 cm^3.


Aufgabe 9

Wertungsaufgabe 657

657

„Schau mal Mike, ich habe in ein Koordinatensystem ein großes Trapez gezeichnet. Aus den Koordinaten der Punkte K und I sind die Radien der Kreise ableitbar. M_a und M_c sind Mittelpunkte.“, sagte Bernd. „Das mache ich gleich auch mal.“
Da man die Koordinaten aus dem Bild ablesen kann und nutzen darf, ist die Ermittlung des Flächeninhaltes des Trapezes ganz einfach. Zusammen mit den Gleichungen der linearen Funktionen, die sich in X schneiden, bringt das 6 blaue Punkte.
Der Punkt X ist ein besonderer Punkt des Trapezes. Welche Besonderheit „besitzt“ dieser Punkt und kann man die Konstruktion eines solchen besonderen Punktes X in jedem Trapez vornehmen? (6 rote Punkte)

Termin der Abgabe 10.12.2020. Срок сдачи 10.12.2020. Ultimo termine di scadenza per l´invio è il 10.12.2020. Deadline for solution is the 10th. December 2020. Date limite pour la solution 10.12.2020. Soluciones hasta el 10.12.2020. Beadási határidő 2020.12.10.

rus

657

"Смотри-ка Майк, я нарисовал большую трапецию в координатную систему. Из координат точек K и I можно определить радиусы кругов. M_a и M_c являются серединами сторон», сказал Бернд. « Я это сейчас тоже нарисую», ответил Майк.
Определение площади трапеции очень просто, так как его координаты можно снимать из рисунка и разрешается их использовать. Вместе с уравнениями линейных функций, которые пересекаются в точке Х, это награждается 6 синими очками.
Точка Х является особой точкой трапеции. Какой особенностью «обладает» эта точка и возможно ли реализовать конструкцию такой особой точки в каждой трапеции? (6 красных очков).

hun

657

„Nézd csak Mike, rajzoltam a koordináta rendszerbe egy nagy trapézt. A K és az I pontok koordinátáiból a körök sugarai levezethetők. Az M_a és az M_c a középpontok” – mondta Mike. „Na, ezt megcsinálom én is mindjárt.”
Mivel a koordinátákat az ábráról le lehet olvasni és használni, a trapéz területének megadása egész egyszerű. Együtt az egyenesek egyenletével melyek az X pontban metszik egymást, 6 kék pontot ér.
Az X pont különleges pontja a trapéznak. Mely különlegességgel bír ez a pont és meg lehet-e szerkeszteni egy ilyen különleges X pontot minden trapéz esetén? (6 piros pont)

fr

657

"Regardes Mike, j'ai dessiné un grand trapèze dans un système de coordonnées. Les rayons des cercles peuvent être dérivés des coordonnées des points K et I. M_a et M_c sont des points centraux", a déclaré Bernd.
"Je vais faire pareil."
Puisque on peut lire les coordonnées de l'image et qu'on est autorisé à les utiliser, la détermination de la surface du trapèze est très facile. Avec les équations des fonctions linéaires qui se coupent en X, cela donnera 6 points bleus.
Le point X est un point spécial du trapèze. Quelle est la particularité de ce point et est-il possible de construire un tel point spécial X dans n'importe quel trapèze? (6 points rouges)

esp

657

“Mira, Mike – he esbozado un trapecio grande en un sistema de coordenadas. Se pueden derivar los radios de los círculos de las coordenadas de los puntos K y I. Los puntos centrales son M_a y M_c”, dijo Bernd. “Esto voy a hacer también justamente.”
Puesto que se pueden notar y usar las coordenadas en la proyección, el cálculo del área del trapecio es muy fácil. Junto con las ecuaciones de las funciones lineales que se cruzan en X, esto produce 6 puntos azules.
El punto X es un punto particular del trapecio. ¿Cuál particularidad tiene este punto? Y ¿se puede construir semejante punto X en cada trapecio posible? 6 puntos rojos.

en

657

“Look Mike, I drew a big trapezium into a coordinate system. From the points coordinates K and I the circle radii can be deduced. M_a and M_c are the centre.”, said Bernd. “I‘ll have a try myself.”
Since you can get the coordinates from the picture, the calculation of the trapezium area is easy. Together with the equation of the linear function, which crosses X, you get 6 blue points.
Point X is a special trapezium point. Which characteristics does this point have and can you construct such a point X in every trapezium? (6 red points)

it

657

“Guarda, Mike, ho disegnato un trapezio grande dentro un sistema di coordinate. Dai coordinati dei punti K e I si possono derivare i raggi dei cerchi. M_a e M_c sono i loro centri.”, diceva Bernd. “Lo rifaccio anch’io”.
Dato che le coordinate di possono leggere facilmente dal disegno e che è lecito di usarle, è facile trovare l’ area del trapezio. Insieme alle equazioni delle funzioni lineari che si intersecano in x, quello porta 6 punti blu.
Il punto x è un punto molto speciale del trapezio. Qual’è la sua particolarità ed è possible costruire un tale punto in un trapezio qualsiasi? – 6 punti rossi

Lösung/solution/soluzione/résultat/Решение:

 Musterlösung von Birgit Grimmeisen, danke. --> pdf <--


Aufgabe 10

Wertungsaufgabe 658

„Übst du Bruchrechnung?“, fragte Lisa. „Bei der ersten Aufgabe sieht das so aus, auch wenn natürliche Zahlen gesucht sind, aber bei der zweiten Aufgabe liegst du richtig.“, erwiderte Maria.
Gesucht sind die natürlichen Zahlen a, b und c, für die a+b+c=972 gilt. Weiterhin gilt.: b = 3+ a/3 und c = 3 + b/3 Für das Berechnen der Zahlen a, b, c gibt es 3 blaue Punkte, auch wenn sie möglicherweise keine natürlichen Zahlen sind.
4 rote Punkte gibt es, wenn gezeigt wird, dass (x ungleich y) die Gleichung gilt (oder auch nicht).

658 

Termin der Abgabe 17.12.2020. Срок сдачи 17.12.2020. Ultimo termine di scadenza per l´invio è il 17.12.2020. Deadline for solution is the 17th. December 2020. Date limite pour la solution 17.12.2020. Soluciones hasta el 17.12.2020. Beadási határidő 2020.12.17.

rus

«Тренируешь ли ты исчисление дробей?», спросила Лиза. «У первой задачи так выглядит, хотя и ищут натуральные числа, но при второй задачe ты права», ответила Мария.
Искомы те натуральные числа a, b и c, для которых имеет место a+b+c=972. Кроме того имеет место: b = 3+ a/3 и c = 3 + b/3. Для вычисления чисел a, b, c вы получите 3 синих очка, даже если они быть может не являются натуральными числами.
Вы получите 4 красных очка, если покажете, что имеет место равенство

658

(x неравно y) (или если покажете, что это равенство не имеет место).

hun

„Gyakorlod a törtekkel számolást?“ – kérdezte Lisa. „Az első feladatnál úgy néz ki még ha természetes számokat keresünk is, de a második feladatnál helyesen gondolod.“ – válaszolta Mária.
Keressük azokat az a, b és c termésetes számokat, amelyekre érvényes: a+b+c=972, továbbá: b = 3+ a/3 und c = 3 + b/3. Az a, b és c számok kiszámításáért 3 kék pont jár, az is lehetséges, hogy nem természetes számok.
4 piros pontot kap, ha bebizonyítja, hogy az egyenlet érvényes (vagy pedig nem).

658

fr

"Tu pratique les fractions?" demanda Lisa. "Cela ressemble à ceci avec la première tâche, même si des nombres naturels sont recherchés, mais tu as raison avec la deuxième tâche", répondit Maria.
Nous recherchons les nombres entiers naturels a, b et c, auxquels s'applique a + b + c = 972. De plus: b = 3+ a / 3 et c = 3 + b / 3. Il y aura 3 points bleus pour calculer les nombres a, b, c, même s'il ne s'agit pas de nombres naturels.
Il y aura 4 points rouges quand il est montré que (x différent de y) l'équation s'applique (ou pas).

658

esp

“Estás practicando el cálculo de fracciones?”, preguntó Lisa. “En el primer problema solo se ve así, porque de verdad se buscan números naturales. Pero en el caso del segundo problema tienes razón”, repuso María.
Se buscan los números naturales a, b y c, para los que todos tiene validez a + b + c = 972. Además, es válido: b = 3 + a / 3 y c = 3 + b / 3. Para el cálculo de los números a, b y c se reciben 3 puntos azules, incluso si posiblemente no son números naturales. Se rinden 4 puntos rojos con la prueba que (x desigual a y) es válida la siguiente ecuación o no. 

658

en

“Are you training fraction arithmetic?”, asked Lisa. “At the first problem it looks like this, even when you look for whole numbers, but with the second problem you are right.”, answered Maria. We are looking for whole numbers a, b and c, for which a+b+c=972 is true. Furthermore it should be true.: b = 3+ a/3 and c = 3 + b/3.
For calculating the numbers a, b, c you will get 3 blue points, even if they possibly are no whole numbers.
4 red points you will get, if you show, that (x unequal y) the following equation is true (or not).

658

it

“Stai esercitando il calcolo con frazioni?”, Lisa chiedeva. “Nel primo problema sembra di sì, ma invece si cercano numeri naturali, ma per il secondo problema hai ragione.”, Maria replicava.
Si cercano numeri naturali a, b e c, per le quali sia a+b+c=972. Inoltre sia: b = 3+a/3 e c = 3 + b/3. Per la calcolazione dei numeri a, b e c vengono dati 3 punti blu, anche se forse non siano numeri naturali.
Si ricevano 4 punti rossi, dimostrando che (x ineguale a y) l’ equazione seguent sia giusto (o anche no).

658

Lösung/solution/soluzione/résultat/Решение:

Lösung von Magdalena mit großem "Geschütz": --> pdf <--, danke
Und Alexander Wolf.

Blau:

b = 3 + a/3
c = 3 + b/3 = 3 + (3 + a/3)/3
a + b + c = 972
=> a + (3 + a/3) + (3 + (3 + a/3)/3) = 972
=> a + 3 + a/3 + 3 + 1 + a/9 = 972
=> 13/9a + 7 = 972
=> a = 668,077
b = 3 + a/3 = 225,692
c = 3 + b/3 = 78,231

a+b+c = 972

Rot:
(1/(x-y) + 1/(x+y)) / ((1/(x-y) - 1/(x+y)))
= (((x+y)+(x-y))/((x-y)(x+y))) / (((x+y)-(x-y))/((x-y)(x+y)))
= ((x+y)+(x-y)) / ((x+y)-(x-y))
= (2x) / (2y)
= x/y
q.e.d.


Aufgabe 11

Wertungsaufgabe 659

659

„Wie du sehen kannst, habe ich das berühmte Dreieck des Pythagoras in ein Koordinatensystem gezeichnet.“, sagte Mike zu Maria.
„Sollen die grünen Dreiecke gleichseitig sein?“, fragte Maria. „Aber ja“.
Wie groß sind Flächeninhalt und Umfang des Sechsecks AFBDCE? (4+2) blaue Punkte.
Der Punkt G (Schnittpunkt der Geraden AD, BE und CF) erzeugt die Dreiecke ABG, BCG und CAG. Nachzuweisen ist, dass die Winkel dieser Dreiecke, die den Punkt G gemeinsam haben, gleich groß sind (oder auch nicht). Der Punkt G ist ein „besonderer“ Punkt des Dreiecks und hat einen berühmten Namen – welchen? (5+1) rote Punkte.

Termin der Abgabe 07.01.2021. Срок сдачи 07.01.2021. Ultimo termine di scadenza per l´invio è il 07.01.1921. Deadline for solution is the 7th. January 2021. Date limite pour la solution 07.01.2021. Soluciones hasta el 07.01.2021. Beadási határidő 2021.01.07.

rus

659

«Как ты можешь видеть, я нарисовал знаменитый треугольник Пифагора в координатную систему», сказал Майк к Марие. «Являются зелёные треугольники равносторонними?», спросила Мария. «Ну конечно.»
Какова площадь и периметр шестиугольника AFBDCE? (4+2) синих очка.
Точка G ведёт к треугольникам ABG, BCG и CAG. Покажите, что углы этих треугольников, которые имеют сообща точку G, равны (или нет).
Точка G - «особенная» , какая особенность у ней? (5+1) красное очко.

hun

659

Amint láthatod megszerkesztettem Pythagoras híres háromszögét egy koordináta rendszerben“ – mondta Mike Máriának. „A kék háromszögek egyenlő oldalúak?“ – kérdezte Mária. „Igen“.
Mekkora a területe és a kerülete az AFBDCE hatszögnek? (4+2 kék pont)
A G pont vezet az ABG, BCG és CAG háromszögekhez. Bizonyítsa be, vagy cáfolja meg, hogy ezen háromszögek G ponttal közös szöge egyenlő nagyságú. A G pont „különleges“ pontja a háromszögeknek és van egy ismert neve is, mi ez? 5+1 piros pont

fr

659

"Comme tu peux le voir, j'ai dessiné le fameux triangle de Pythagore dans un système de coordonnées. " dit Mike à Maria.
"Les triangles verts devraient-ils être équilatéraux?", a demandé Maria. "Mais oui".
Quelle est la superficie et le périmètre de l'hexagone AFBDCE? (4 + 2) points bleus.
Le point G conduit aux triangles ABG, BCG et CAG. Il faut prouver que les angles de ces triangles, qui ont le point G en commun, sont égaux (ou pas). Le point G est un point «spécial» du triangle et porte un nom célèbre - lequel? (5 + 1) points rouges.

esp

659

“Cómo lo puedes ver, he esbozado el famoso triángulo de Pitágoras en un sistema de coordenadas”, le dijo Mike a María. “Pues sí.”
¿Cuánto miden el área y el perímetro del hexágono AFBDCE? (4+2 puntos azules).
El punto G conduce a los triángulos ABG, BCG y CAG. Hay que comprobar que son del mismo tamaño (o no) los ángulos de los triángulos que tienen en común el punto G. El punto G es un punto particular del triángulo y tiene un nombre famoso – ¿cuál es? (5+1 puntos rojos)

en

659

“As you can see, I drew the famous Pythagoras triangle into a coordinate system.”, Mike told Maria.
“Shall the green trangles be equilateral?”, asked Maria. „Of cause“.
How big are area and perimeter of the hexagon AFBDCE? (4+2) blue points.
Point G leads to the triangles ABG, BCG and CAG. You have to proof, that the angles of those triangles, which all have the same point G in common, are of the same size (or not). Point G is a “special” point of the triangle and has a famous name – which? (5+1) red points.

it

659

„Come vedi, ho disegnato il famoso teorema di pitagora in un sistema di coordinate”, Mike diceva a Maria. “Sono eqilateri i triangoli verdi?”, chiedeva Maria. – “Ma sì!”
Quale sono la superficie e la circonferenza dell’ esagono AFBDCE? – 4 + 2 punti blu
Il punto G guida ai triangoli ABG, BCG e CAG. È da dimostrare che gli angoli dei triangoli che hanno il punto G in comune siano uguali. Il punto G è un punto particolare del triangolo ABC? ed ha un nome famoso – quale? – 5 + 1 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Karlludwig (es gab auch andere Wege), danke. --> pdf <--


Aufgabe 12

Wertungsaufgabe 660

Dürerbuchstabe

660 c

„Da hast du ja ein schönes C konstruiert..“, sagte Mike zu Lisa. „Mir gefällt es auch, es gibt verschiedene Varianten bei Dürer zu finden. Ich abe mich für diese Variante entschieden.“, erwiderte Lisa.
Wie immer beginnt es mit einem Quadrat ABCD (hier ist a = 10 cm). Oben und unten sind parallele Linien mit dem Abstand a/30 zu erkennen. Die senkrechte Linie auf der rechten Seite ist a/10 von F entfernt.. E und F sind die Mittelpunkte ihrer Quadratseiten. Die Radien der großen Kreise um M1 bzw. M2 sind gleich groß. Der Abstand der Mittelpunkt ist a/10 groß.
M1, M2 und C bilden ein Dreieck. Wie groß sind Flächeninhalt und Umfang dieses Dreiecks. 4 blaue Punkte. Wie groß ist Umfang und Flächeninhalt des C? - 12 rote Punkte.

Termin der Abgabe 14.01.2021. Срок сдачи 14.01.2021. Ultimo termine di scadenza per l´invio è il 14.01.1921. Deadline for solution is the 14th. January 2021. Date limite pour la solution 14.01.2021. Soluciones hasta el 14.01.2021. Beadási határidő 2021.01.14.

rus

660 c

«Там ты построила красивый C», сказал Майк к Лизе. «Мне он тоже нравится. У Дюрера можно найти разные варианты. Я выбрала этот вариант», ответила Лиза.
Как всегда конструкция начинается с квадратом ABCD (здесь а = 10 см). Наверху и внизу можно увидеть параллельные линии с расстоянием a/30. Вертикальная линия на правой стороне отстоит a/10 от F. E и F - центры своих сторон квадрата. Радиусы больших окружностей вокруг точек M1 и соответственно M2 равны между собой. Расстояние между центрами M1 и M2 равно a/10. M1, M2 и C образуют треугольник.
Какую величину имеют площадь и периметр этого треугольника? 4 синих очкa.
Какую величину имеют периметр и площадь буквы C? 12 красных очек.

hun

660 c

„Szép C-t szerkesztettél.” – mondta Mike Lisának. „Nekem is tetszik, ráadásul különböző változatokat is lehet találni Dürertől. De én emellett döntöttem.” – válaszolta Lisa.
Mint mindig egy ABCD négyszöggel (itt a = 10 cm) kezdjük el. Fent és lent párhuzamos vonalak láthatók, távolságuk a/30. A függőleges vonal a jobb oldalon F-től a/10 távolságra van. E és F az oldalak középpontjai. A nagy körök sugara M1 és M2 körül egyenlő nagyságú. A középpont távolsága a/10. M1, M2 és C háromszöget képeznek. Mekkora a területe és kerülete ennek a háromszögnek? Mekkora a kerülete és területe a C betűnek? 12 piros pont

fr

Lettre de Dürer

660 c
"Tu as fait un joli C .. ", dit Mike à Lisa. «J'aime aussi le fait qu'il existe différentes versions chez Dürer. J'ai choisi cette variante. », a répondu Lisa.
Comme toujours, il commence par un carré ABCD (ici a = 10 cm). Au-dessus et au-dessous des lignes parallèles avec une distance de a/30 peuvent être vues. La ligne verticale sur la droite est à a/10 de F.
E et F sont les milieux de leurs côtés du carré. Les rayons des grands cercles autour de M1 et M2 sont les mêmes. La distance entre les centres est de a/10.
M1, M2 et C forment un triangle. Quelle est l'aire et le périmètre de ce triangle? 4 points bleus.
Quelle est la circonférence et l'aire du C? - 12 points rouges.

esp

660 c

„Has construido un C hermoso…” le dijo Mike a Lisa. “A mí me gusta también. Dürer nos enseña maneras distintas. Me he decidido para esta versión”, repuso Lisa. Como siempre, se comienza con un cuadrado ABCD (aquí a=10cm). Arriba y abajo se identifican líneas paralelas a una distancia de a/30. La línea vertical al lado derecho está a una distancia de a/10 de F. E y F cada uno son los puntos centrales del lado del cuadrado correspondiente. Los radios de los círculos grandes alrededor de M1 o sea M2 son del mismo tamaño. La distancia entre los puntos centrales mide a/10.
M1, M2 y C forman un triángulo. ¿Qué grande son área y perímetro del triángulo? - 4 puntos azules. ¿Cuánto miden perímetro y área del C? – 12 puntos rojos.

en

Dürer letter

660 c

“ You have constructed a nice C”, Mike told Lisa. “I like it too. There are different varieties which Dürer drew. I chose this variety.”, answered Lisa.
As always we start with a square ABCD (here a = 10 cm). At the top and at the bottom are parallel lines with the distance a/30. The perpendicular line on the right side is a/10 away from F. E and F are the centers of their square sides. The radii of the big circles around M1 resp. M2 are of the same size. The distance of the centers are a/10.
M1, M2 and C form a triangle. How big are area and perimeter of this triangle? 4 blue points. How big are area and perimeter of C? - 12 red points.

it
Lettera di Dürer

660 c

„Hai costruito un bel C.”, Mike diceva a Lisa. “Piace anche a me; Dürer ne ha fatto diverse varianti. Io ho scelto quella lì.”, Lisa replicava.
Come sempre, inizia con un quadrato ABCD (in questo caso a = 10 cm). In alto ed in basso ci sono parallele in una distanza di a/30. E e F sono i centri dei lati del quadrato. La linea perpendicolare a destra ha una distanza di a/10 dal Punto F. La distanza di M1 e M2 è a/10. I raggi dei cerchi grandi coi centri M1 e M2 sono uguali.
M1, M2 e C formano un triangolo. Quale sono l’area e la circonferenza di questo triangolo? - 4 punti blu
Quale sono l’area e la circonferenza del C? – 12 punti rossi

Lösung/solution/soluzione/résultat/Решение:

 Musterlösungen von Magdalene --> pdf <-- und calvin --> pdf <--, danke.
Die rote Aufgabe hatte es durchaus in sich.


Auswertung Serie 55

 Die Buchpreise gehen an Calvin, Hans und Grisu1712, herzlichen Glückwunsch.

Auswertung Serie 55 (rote Liste)

Platz Name Ort Summe Aufgabe
  649 650 651 652 653 654 655 656 657 658 659 660
1. Magdalene Chemnitz 83 6 6 10 6 12 2 7 6 6 4 6 12
1. Karlludwig Cottbus 83 6 6 10 6 12 2 7 6 6 4 6 12
1. HeLoh Berlin 83 6 6 10 6 12 2 7 6 6 4 6 12
1. Grisu1712 Bietigheim-Bissingen 83 6 6 10 6 12 2 7 6 6 4 6 12
1. Reinhold M. Leipzig 83 6 6 10 6 12 2 7 6 6 4 6 12
1. Calvin Crafty Wallenhorst 83 6 6 10 6 12 2 7 6 6 4 6 12
1. Paulchen Hunter Heidelberg 83 6 6 10 6 12 2 7 6 6 4 6 12
1. Birgit Grimmeisen Lahntal 83 6 6 10 6 12 2 7 6 6 4 6 12
1. Maximilian Jena 83 6 6 10 6 12 2 7 6 6 4 6 12
2. Hans Amstetten 82 6 6 10 6 12 1 7 6 6 4 6 12
3. Hirvi Bremerhaven 80 6 6 10 6 9 2 7 6 6 4 6 12
4. Dana Ingolstadt 79 6 6 10 6 10 2 5 6 6 4 6 12
5. Alexander Wolf Aachen 77 6 6 10 6 11 2 6 6 4 4 4 12
6. Albert A. Plauen 74 6 6 10 6 12 2 7 6 - 4 6 9
7. Gerhard Palme Schwabmünchen 71 - 6 10 6 12 2 7 6 6 4 6 6
8. Axel Kästner Chemnitz 70 6 6 - 6 11 2 6 6 6 4 5 12
9. Frank R. Leipzig 61 6 6 - 6 10 2 7 6 6 4 - 8
10. Günter S. Hennef 55 - 6 - 6 - 2 7 6 6 4 6 12
11. Kurt Schmidt Berlin 51 5 6 - 6 10 2 6 4 - - - 12
12. Ingmar Rubin Berlin 47 - 6 10 6 - - - - 3 4 6 12
13. Linus-Valentin Lohs Chemnitz 45 6 6 10 6 - 2 - 6 - 4 5 -
14. Harald Schreiber Köln 40 - - - - - - 7 6 6 3 6 12
15. Helmut Schneider Su-Ro 32 - 6 10 6 - 2 4 - - 4 - -
16. Katja Seidel Chemnitz 27 - - - - - 2 3 6 6 4 6 -
17. Siegfried Herrmann Greiz 19 - - - 3 - 2 7 - - 3 4 -
18. Janet A. Chemnitz 17 6 6 - - - 1 - - - 4 - -
18. Laura Jane Abai Chemnitz 17 6 6 - - - 1 - - - 4 - -
19. Petar H. Neuwied 16 6 - 10 - - - - - - - - -
19. Othmar Z. Weimar (Lahn) 16 6 - 10 - - - - - - - - -
20. Alexandra Höfner Chemnitz 14 - 6 8 - - - - - - - - -
20. Ronja Kempe Chemnitz 14 6 6 - - - 2 - - - - - -
21. Ronja Schobner Chemnitz 13 - - - - 4 - - 6 3 - - -
21. Reka W. Siegerland 13 6 - - 6 - 1 - - - - - -
22. Bernd Berlin 12 - 6 - - - 1 - - 1 4 - -
23. Nagy-Balo Andras Budapest 10 - - - 6 - - - - - 4 - -
23. Sebastian Z Pirna 10 - - 10 - - - - - - - - -
24. Christian Meißner Chemnitz 9 - - - - - - - - - 4 5 -
25. Helene Kübeck Chemnitz 8 - 6 - - - 2 - - - - - -
25. Tabea Raupach Chemnitz 8 - 6 - - - 2 - - - - - -
26. Felix Helmert Chemnitz 6 6 - - - - - - - - - - -
26. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
26. Volker Bertram Wefensleben 6 - - - - - - - - - - 6 -
26. Luca Sindel Schrobenhausen 6 6 - - - - - - - - - - -
26. Sarah Badaoui Frankfurt/Main 6 6 - - - - - - - - - - -
26. Emily Seidel Chemnitz 6 - - - - - - - 6 - - - -
26. Andree Dammann Muenchen 6 - - - - - 2 - - - 4 - -
27. Luise Schlenkrich Chemnitz 4 - - - - - - - - - 4 - -
28. Dominique Böttinger Chemnitz 2 - - - 2 - - - - - - - -
28.     2 - - - - - 2 - - - - - -
28. Linnea Böhm Chemnitz 2 - - - - - 2 - - - - - -
28. Henry Hasenknopf Chemnitz 2 - - - - - 2 - - - - - -
28. Paula Rauschenbach Chemnitz 2 - - - - - 2 - - - - - -
29. Liuba Bässler Chemnitz 1 - - - - - 1 - - - - - -
29. Christian Carda Schorndorf 1 - - - - - 1 - - - - - -

 

Auswertung Serie 55 (blaue Liste)

Platz Name Ort Summe Aufgabe
  649 650 651 652 653 654 655 656 657 658 659 660
1. Grisu1712 Bietigheim-Bissingen 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Linus-Valentin Lohs Chemnitz 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Hans Amstetten 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Magdalene Chemnitz 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Dana Ingolstadt 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Paulchen Hunter Heidelberg 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Calvin Crafty Wallenhorst 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Alexander Wolf Aachen 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Karlludwig Cottbus 67 6 5 6 6 10 2 7 6 6 3 6 4
1. Reinhold M. Leipzig 67 6 5 6 6 10 2 7 6 6 3 6 4
2. Birgit Grimmeisen Lahntal 66 6 4 6 6 10 2 7 6 6 3 6 4
2. Axel Kästner Chemnitz 66 6 5 6 6 10 2 7 5 6 3 6 4
2. HeLoh Berlin 66 6 5 6 6 10 2 7 6 6 3 5 4
2. Maximilian Jena 66 6 5 6 6 10 2 7 6 5 3 6 4
3. Hirvi Bremerhaven 64 6 5 6 6 9 2 7 6 6 3 4 4
4. Gerhard Palme Schwabmünchen 61 - 5 6 6 10 2 7 6 6 3 6 4
5. Kurt Schmidt Berlin 59 6 5 6 6 10 2 6 4 4 - 6 4
5. Janet A. Chemnitz 59 6 5 6 6 10 1 7 5 - 3 6 4
5. Laura Jane Abai Chemnitz 59 6 5 6 6 10 1 7 5 - 3 6 4
6. Albert A. Plauen 56 4 5 6 6 10 2 7 6 - 3 4 3
7. Frank R. Leipzig 54 6 4 - 6 10 2 7 6 6 3 - 4
8. Günter S. Hennef 45 - 5 - 6 - 2 7 6 6 3 6 4
9. Ingmar Rubin Berlin 43 - 5 6 6 - - 7 - 6 3 6 4
10. Siegfried Herrmann Greiz 40 - 5 6 3 8 2 7 - - 3 6 -
11. Niklas Trommer Chemnitz 34 5 4 6 - - 2 7 - - 3 6 1
11. Katja Seidel Chemnitz 34 - - - - - 2 7 6 6 3 6 4
12. Bernd Berlin 32 - 5 - 6 - 1 5 - 6 3 6 -
12. Harald Schreiber Köln 32 - - - - - - 7 6 6 3 6 4
12. Paula Rauschenbach Chemnitz 32 6 - - 6 8 2 - - - - 6 4
13. Maya Melchert Chemnitz 30 6 5 - - - 2 7 - - - 6 4
14. Helmut Schneider Su-Ro 29 - 5 6 6 - 2 7 - - 3 - -
15. Josefin Buttler Chemnitz 28 6 5 - - - 1 6 6 - - - 4
16. Emily Seidel Chemnitz 27 - - - 6 - 2 5 6 6 2 - -
16. Ronja Schobner Chemnitz 27 - - - - 10 - 6 6 5 - - -
17. Anabel Pötschke Chemnitz 25 6 - - - - - 5 - 4 - 6 4
18. Sophie Pöschel Chemnitz 24 - - - - 10 2 - 6 6 - - -
18. Adrian Werner Chemnitz 24 - 5 6 - - - 5 - - 2 6 -
19. Jakob Walther Chemnitz 23 5 5 - - - - 7 - 6 - - -
19. Florine Lorenz Chemnitz 23 6 - - - - 1 6 6 - - - 4
20. Marie Reichelt Chemnitz 21 6 4 - - - - - 6 5 - - -
21. Ronja Kempe Chemnitz 20 4 5 - - - 2 - - - - 6 3
21. Yannick Schädlich Chemnitz 20 5 - - - - 2 - 4 6 - - 3
21. Paula Anita Beneking Chemnitz 20 - 5 - - - 2 7 - 6 - - -
21. Moritz Kinder Chemnitz 20 6 5 - - - - 6 - - - - 3
22. Christian Carda Schorndorf 19 - - - - 10 2 7 - - - - -
22. Dorothea Richter Chemnitz 19 6 - - - - - 7 - 6 - - -
23. Tabea Raupach Chemnitz 16 - 4 - - - 2 - - 4 - 6 -
23. Adrian Amini Chemnitz 16 4 5 - - - - 5 2 - - - -
23. Othmar Z. Weimar (Lahn) 16 6 4 6 - - - - - - - - -
24. Nagy-Balo Andras Budapest 15 - - 6 6 - - - - - 3 - -
25. Reka W. Siegerland 14 6 - - 6 - 2 - - - - - -
25. Quentin Steinbach Chemnitz 14 5 - 6 - - - - 3 - - - -
26. Chiara Röder Chemnitz 13 - - 6 - - 2 - - 5 - - -
26. Josefine Bohley Chemnitz 13 - - - 6 - - 7 - - - - -
26. Helene Kübeck Chemnitz 13 - 4 - - - 2 - - 2 - 5 -
27. Petar H. Neuwied 12 6 - 6 - - - - - - - - -
27. Dominique Böttinger Chemnitz 12 - - - 3 3 - - - 4 2 - -
28. Alexandra Höfner Chemnitz 11 - 5 6 - - - - - - - - -
29. Rufus Windrich Chemnitz 10 - - - 6 - - 4 - - - - -
29. Antonio Jobst Chemnitz 10 5 5 - - - - - - - - - -
30. Andree Dammann Muenchen 9 - - - - - 2 - - - 3 - 4
30. Christian Meißner Chemnitz 9 - - - - - - - - - 3 6 -
31. Linnea Böhm Chemnitz 8 - - - - - 2 6 - - - - -
31. Henri Lorenz Chemnitz 8 - - - - 5 - 3 - - - - -
32. Sebastian Z Pirna 6 - - 6 - - - - - - - - -
32. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
32. Felix Helmert Chemnitz 6 6 - - - - - - - - - - -
32. Volker Bertram Wefensleben 6 - - - - - - - - - - 6 -
32. Sarah Badaoui Frankfurt/Main 6 6 - - - - - - - - - - -
32. Luca Sindel Schrobenhausen 6 6 - - - - - - - - - - -
32. Mikko Winkler Chemnitz 6 - - - 6 - - - - - - - -
33. Luise Schlenkrich Chemnitz 5 - - - 2 2 - - - - 1 - -
33. Jannik Ebermann Chemnitz 5 - - - - - - 5 - - - - -
33. Oskar Strohbach Chemnitz 5 - 5 - - - - - - - - - -
34. Tommy Oeser Chemnitz 4 - - - - - - 4 - - - - -
34. Pascal Graupner Chemnitz 4 4 - - - - - - - - - - -
35. Henry Hasenknopf Chemnitz 1 - - - - - 1 - - - - - -
35. Liuba Bässler Chemnitz 1 - - - - - 1 - - - - - -

 

Symbolrätsel der Woche

Symbolrätsel der Woche

Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

A rejtvény megfejtésére érvényes: mibleib gesundnden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

每个图形迷题的规律: 每个图片表示一个数字,同样的图片表示同样的数字,不同的图片就表示不同的数字。该题目负责人电子邮件为HRGauern[at]@t-online.de ©

--> Link <--

Aufsummierte Auswertung Dezember 2021 (Einsendungen bis 31.12.2021, Liste mit den ersten 10 häufigsten Einsendern).

Grimmeisen, Birgit                  91 Einsendungen
Müller, Reinhold                     88 Einsendungen
Eckhard-Opitz, Karlludwig      86 Einsendungen
Herrmann, Siegfried               70 Einsendungen
Abai, Janet                             68 Einsendungen
Armbruster, Albert                   51 Einsendungen
Seebach, Günter                    42 Einsendungen
Palme, Gerhard                      14 Einsendungen
Sindel, Luca                           13 Einsendungen
Meyer, Magdalene                 12 Einsendungen
Winger, Antonia                      10 Einsendungen

Aufsummierte Auswertung November 2021 (Einsendungen bis 30.11.2021, Liste mit den ersten 10 häufigsten Einsendern).

Grimmeisen, Birgit                  87 Einsendungen
Müller, Reinhold                      84 Einsendungen
Eckhard-Opitz, Karlludwig        83 Einsendungen
Herrmann, Siegfried                 66 Einsendungen
Abai, Janet                             64 Einsendungen
Armbruster, Albert                   48 Einsendungen
Seebach, Günter                     41 Einsendungen
Palme, Gerhard                      14 Einsendungen
Sindel, Luca                           13 Einsendungen
Meyer, Magdalene                  12 Einsendungen
Winger, Antonia                      10 Einsendungen

Aufsummierte Auswertung Oktober 2021 (Einsendungen bis 31.10.2021, Liste mit den ersten 10 häufigsten Einsendern).

Grimmeisen, Birgit                  82 Einsendungen
Müller, Reinhold                     79 Einsendungen
Eckhard-Opitz, Karlludwig      78 Einsendungen
Herrmann, Siegfried               61Einsendungen
Abai, Janet                             60 Einsendungen
Armbruster, Albert                  44 Einsendungen
Seebach, Günter                    38 Einsendungen
Palme, Gerhard                      14 Einsendungen
Sindel, Luca                           13 Einsendungen
Meyer, Magdalene                 12 Einsendungen
Winger, Antonia                      10 Einsendungen

Aufsummierte Auswertung September 2021 (Einsendungen bis 30.09.2021, Liste mit den ersten 10 häufigsten Einsendern).

Grimmeisen, Birgit                  78 Einsendungen
Müller, Reinhold                     76 Einsendungen
Eckhard-Opitz, Karlludwig      74 Einsendungen
Herrmann, Siegfried               58 Einsendungen
Abai, Janet                             56 Einsendungen
Armbruster, Albert                   41 Einsendungen
Seebach, Günter                    36 Einsendungen
Palme, Gerhard                      14 Einsendungen
Sindel, Luca                           13 Einsendungen
Meyer, Magdalene                 12 Einsendungen
Winger, Antonia                      10 Einsendungen

Aufsummierte Auswertung August 2021 (Einsendungen bis 31.08.2021, Liste mit den ersten 10 häufigsten Einsendern).

Grimmeisen, Birgit                  74 Einsendungen
Müller, Reinhold                     73 Einsendungen
Eckhard-Opitz, Karlludwig      71 Einsendungen
Herrmann, Siegfried               55 Einsendungen
Abai, Janet                             53 Einsendungen
Armbruster, Albert                   39 Einsendungen
Seebach, Günter                    34 Einsendungen
Palme, Gerhard                      14 Einsendungen
Sindel, Luca                           13 Einsendungen
Meyer, Magdalene                 12 Einsendungen
Winger, Antonia                      10 Einsendungen

Aufsummierte Auswertung Juli 2021 (Einsendungen bis 31.07.2021, Liste mit den ersten 10 häufigsten Einsendern).

Grimmeisen, Birgit                  69 Einsendungen
Müller, Reinhold                     68 Einsendungen
Eckhard-Opitz, Karlludwig      66 Einsendungen
Herrmann, Siegfried               50 Einsendungen
Abai, Janet                             48 Einsendungen
Armbruster, Albert                   39 Einsendungen
Seebach, Günter                    33 Einsendungen
Palme, Gerhard                      14 Einsendungen
Sindel, Luca                           13 Einsendungen
Meyer, Magdalene                 12 Einsendungen
Winger, Antonia                      10 Einsendungen

Aufsummierte Auswertung Juni 2021 (Einsendungen bis 30.06.2021, Liste mit den ersten 10 häufigsten Einsendern).

Grimmeisen, Birgit                  65 Einsendungen
Müller, Reinhold                     63 Einsendungen
Eckhard-Opitz, Karlludwig      62 Einsendungen
Herrmann, Siegfried               46 Einsendungen
Abai, Janet                             45 Einsendungen
Armbruster, Albert                   38 Einsendungen
Seebach, Günter                    32 Einsendungen
Palme, Gerhard                      14 Einsendungen
Sindel, Luca                           13 Einsendungen
Meyer, Magdalene                 12 Einsendungen
Winger, Antonia                      10 Einsendungen

Aufsummierte Auswertung Mai 2021 (Einsendungen bis 31.05.2021, Liste mit den ersten 10 häufigsten Einsendern).

Grimmeisen, Birgit                  60 Einsendungen
Müller, Reinhold                     60 Einsendungen
Eckhard-Opitz, Karlludwig      57 Einsendungen
Herrmann, Siegfried               42 Einsendungen
Abai, Janet                             41 Einsendungen
Armbruster, Albert                   36 Einsendungen
Seebach, Günter                    28 Einsendungen
Palme, Gerhard                      14 Einsendungen
Sindel, Luca                           13 Einsendungen
Meyer, Magdalene                 12 Einsendungen
Winger, Antonia                      10 Einsendungen

Aufsummierte Auswertung April 2021 (Einsendungen bis 30.04.2021, Liste mit den ersten 10 häufigsten Einsendern).

Grimmeisen, Birgit

56

Müller, Reinhold

55

Eckhard-Opitz, Karlludwig

53

Herrmann, Siegfried

37

Abai, Janet

36

Grimmeisen, Birgit                  60 Einsendungen

Müller, Reinhold                     60 Einsendungen

Eckhard-Opitz, Karlludwig      57 Einsendungen

Herrmann, Siegfried               42 Einsendungen

Abai, Janet                             41 Einsendungen

Armbruster, Albert                   36 Einsendungen

Seebach, Günter                    28 Einsendungen

Palme, Gerhard                      14 Einsendungen

Sindel, Luca                           13 Einsendungen

Meyer, Magdalene                 12 Einsendungen

Winger, Antonia                      10 Einsendungen

Armbruster, Albert

32

Seebach, Günter

27

Palme, Gerhard

14

Sindel, Luca

13

Meyer, Magdalene

12

Winger, Antonia

10

 

Aufsummierte Auswertung März 2021 (Einsendungen bis 31.03.2021, Liste mit den ersten 10 häufigsten Einsendern).

Grimmeisen, Birgit

52

Müller, Reinhold

51

Eckhard-Opitz, Karlludwig

49

Abai, Janet

34

Herrmann, Siegfried

33

Armbruster, Albert

31

Seebach, Günter

23

Palme, Gerhard

14

Sindel, Luca

13

Meyer, Magdalene

12

Winger, Antonia

10

Aufsummierte Auswertung Februar 2021 (Einsendungen bis 28.02.2021, Liste mit den ersten 10 häufigsten Einsendern).

Grimmeisen, Birgit

47

Müller, Reinhold

46

Eckhard-Opitz, Karlludwig

44

Abai, Janet

30

Herrmann, Siegfried

28

Armbruster, Albert

27

Seebach, Günter

18

Palme, Gerhard

14

Sindel, Luca

13

Meyer, Magdalene

12

Winger, Antonia

10

 

Aufsummierte Auswertung Januar 2021 (Einsendungen bis 31.01.2021, Liste mit den ersten 10 häufigsten Einsendern).

Grimmeisen, Birgit

43

Müller, Reinhold

42

Eckhard-Opitz, Karlludwig

40

Abai, Janet

27

Armbruster, Albert

26

Herrmann, Siegfried

24

Seebach, Günter

15

Palme, Gerhard

14

Sindel, Luca

13

Meyer, Magdalene

12

Winger, Antonia

10

Aufsummierte Auswertung Dezember 2020 (Einsendungen bis 31.12.2020, Liste mit den ersten 10 häufigsten Einsendern)

Grimmeisen, Birgit 39
Müller, Reinhold 39
Eckhard-Opitz, Karlludwig 36
Armbruster, Albert 23
Abai, Janet 23
Herrmann, Siegfried 19
Palme, Gerhard 14
Sindel, Luca 13
Meyer, Magdalene 12
Seebach, Günter 11
Winger, Antonia 10

Aufsummierte Auswertung November 2020 (Einsendungen bis 30.11.2020, Liste mit den ersten 10 häufigsten Einsendern)

Grimmeisen, Birgit 36 Einsendungen
Müller, Reinhold 35 Einsendungen
Eckhard-Opitz, Karlludwig 31 Einsendungen
Armbruster, Albert 21 Einsendungen
Abai, Janet 21 Einsendungen
Herrmann, Siegfried 16 Einsendungen
Palme, Gerhard 14 Einsendungen
Sindel, Luca 13 Einsendungen
Meyer, Magdalene 12 Einsendungen
Winger, Antonia 10 Einsendungen

Aufsummierte Auswertung Oktober 2020 (Einsendungen bis 31.10.2020)

Grimmeisen, Birgit                  31 Einsendungen
Müller, Reinhold                     30 Einsendungen
Eckhard-Opitz, Karlludwig      27 Einsendungen
Armbruster, Albert                   18 Einsendungen
Abai, Janet                             17 Einsendungen
Palme, Gerhard                      14 Einsendungen
Herrmann, Siegfried               13 Einsendungen
Sindel, Luca                           13 Einsendungen
Meyer, Magdalene                 11 Einsendungen
Winger, Antonia                      10 Einsendungen

Aufsummierte Auswertung September 2020 (Einsendungen bis 26.9.2020)

Grimmeisen, Birgit 26 Einsendungen
Müller, Reinhold 26 Einsendungen
Eckhard-Opitz, Karlludwig 22 Einsendungen
Armbruster, Albert 16 Einsendungen
Palme, Gerhard 14 Einsendungen
Sindel, Luca 13 Einsendungen
Abai, Janet 12 Einsendungen
Meyer, Magdalene 11 Einsendungen
Winger, Antonia 10 Einsendungen
Herrmann, Siegfried 10 Einsendungen

Aufsummierte Auswertung August 2020 (Einsendungen bis 31.8.2020)

Grimmeisen, Birgit                  22 Einsendungen
Müller, Reinhold                     22 Einsendungen
Eckhard-Opitz, Karlludwig      18 Einsendungen
Palme, Gerhard                      14 Einsendungen
Sindel, Luca                           13 Einsendungen
Armbruster, Albert                  12 Einsendungen
Meyer, Magdalene                 11 Einsendungen
Abai, Janet                             10 Einsendungen
Winger, Antonia                      10 Einsendungen

Aufsummierte Auswertung Juli 2020 (Einsendungen bis 23.7.2020)

17          Grimmeisen, Birgit
              Müller, Reinhold
14          Palme, Gerhard
13          Eckhard-Opitz, Karlludwig
12          Sindel, Luca
             Armbruster, Albert
11          Meyer, Magdalene
10          Abai, Janet
9            Winger, Antonia

Aufsummierte Auswertung Juni 2020:

14 Einsendungen: Birgit Grimmeisen, Reinhold Müller
13 Einsendungen: Gerhard Palme
11 Einsendungen: Magdalene Meyer
9 Einsendungen: Janet Abai, Luca Sindel, Karlludwig Eckhard-Opitz

Auswertung Mai (Anzahl ist von April und Mai.)
9 Einsendungen Birgit Grimmeisen, Reinhold Müller
8 Einsendungen Albert Armbruster, Gerhard Palme
7 Einsendungen Magdalene Meyer
6 Einsendungen Janet Abai
5 Einsendungen Luca Sindel, Karlludwig Eckard-Opitz

Insgesamt 78 Einsendungen

Auswertung April 2020:
Mit den meisten Zusendungen über das Formular:
5 Zusendungen Birgit Grimmeisen (Lahntal)
4 Zusendungen:  Magdalene (Chemnitz) Reinhold M. (Leipzig) und Albert A. (Plauen)
Insgesamt wurden 34 Lösungen geschickt. Dazu kommen noch einige über  Lösungen innerhalb der Wochenaufgabenlösungen.

Mai 2020:

Als Preis für 12 gelöste und über das Formular eingesandte Lösungen verschickt HRGauern ein Büchlein.

--> Link <--

Serie 54

 

Serie 54

Hier werden die Aufgaben 637 bis 648 veröffentlicht.

Aufgabe 1

637. Wertungsaufgabe

Logikaufgabe

637 Logikaufgabe
Maria hat mit ihren Freundinnen (Amelie, Charlotte, Diana, Elsa, und Mia) gechattet (Montag, Dienstag, Mittwoch, Donnerstag und Freitag). An jedem der Tage schrieb eine von ihnen eine Klassenarbeit in einem anderen Fach (Mathematik, Physik, Chemie, Latein bzw. Musik). Sie wohnen jede in einer anderen Stadt (Celle, Köln, Mainz, Nürnberg bzw. Zeitz). Am Wochenende gab Maria ihrem Bruder folgende Informationen:
1. Charlotte schrieb am Donnerstag entweder Mathematik oder Musik.
2. Diana aus Zeitz schrieb die Lateinarbeit.
3. Amelie wohnt in  der kleinsten oder der größten der Städte.
4. Am Tag nach der Chemiearbeit schrieb Elsa, die nicht in Celle wohnt, die Mathematikarbeit.
5. Mia wohnt in Mainz.
6. Die Musikarbeit wurde drei Tage später geschrieben als Latein.
7. Am Freitag chattete Maria mit ihrer Freundin, die entweder in Mainz oder in Nürnberg wohnt.
Wer wohnt wo und schrieb wann welche Arbeit?
Sechs blaue Punkte

Die Mädchen, die zufälligerweise alle in der Hauptstraße wohnen (Hausnummern sind 11, 13, 15, 17, und 19) halfen aber auch an einem der Wochentage beim Renovieren der Wohnung (Bad, Kinderzimmer, Balkon, Küche, Flur).
1. Das Mädchen aus der Nummer 15 half bei der Küche mit, das war ein oder zwei Tage nach dem Einsatz von Amelie.
2. Diana wohnt im Haus mit der Nummer 19.
3. Elsa, die nicht  in der 13 wohnt, half beim Flur mit. Das war nach der Aktion mit dem Kinderzimmer.
4. Am Mittwoch wurde im Haus mit der Nummer 11 gearbeitet.
5. Am Freitag wurde der Balkon gemacht, aber nicht von Charlotte.
6. Am Donnerstag war Mia aktiv, deren Hausnummer unterscheidet sich um 4 von der Hausnummer der Helferin beim Renovieren des Bades.
Wer wohnt wo und half wann wobei mit?
6 rote Punkte

--> Vorlage zum Ankreuzen <--

--> Symbolrätsel <--

Termin der Abgabe 09.04.2020. Ultimo termine di scadenza per l´invio è il 09.04.1920. Deadline for solution is the 9th. April 2020. Date limite pour la solution 09.04.2020. Soluciones hasta el 09.04.2020. Beadási határidő 2020.04.09.

hun

Logikai feladat

Mária a barátnőivel (Amelie, Charlotte, Diana, Elsa és Mia) csetelt minden nap (hétfő, kedd, szerda, csütötök és péntek). Minden nap írt valamelyikük dolgozatot egy tárgyból (matek, fizika, kémia, latin és zene). Mind különböző városban laknak (Celle, Köln, Mainz, Nürnber és Zeitz). A hétvégén a következő információt árulja el Mária a testvérének:

  1. Charlotte csütörtökön írt vagy matekból, vagy zenéből.
  2. Diana Zeitzban lakik és latinból írt.
  3. Amelie vagy a legkisebb, vagy a legnagyobb városban lakik.
  4. A kémiadolgozat utáni napon Elsa, aki nem Cellében lakik, matekból írt.
  5. Mia Mainzban lakik.
  6. Zenéből három nappal később írtak, mint latinból.
  7. Pénteken azzal a barátnőjével csetelt Mária, aki vagy Mainzban, vagy Nürnbergben lakik.

Ki hol lakik és miből, mikor írt dolgozatot? 6 kék pont
A lányok, aki véletlenül mind a Fő utcán laknak (házszám 11, 13,15, 17 és 19) csak egy nap segítenek a takarításban (fürdő, gyerekszoba, balkon, konyha, folyosó).
1. A lány, aki a 15-ös szám alatt lakik segített a konyha kitakarításában egy vagy két nappal Amelie után.
2. Diana a 19-es számú házban lakik.
3. Elsa, aki nem a 13-ban lakik, segített a folyosóban. Ez pedig a gyerekszoba után következett.
4. Szerdán a 11-es házban lakó dolgozott.
5. Pénteken takarították ki a balkont, de nem Charlotte.
6. Csütörtökön Mia dolgozott, akinek a házszáma néggyel különbözik a fürdőt kitakarítójáétól.
Ki hol lakik, mikor és mit takarított ki? 6 piros pont

--> Enigma <--

fr

637 tâche logique

Maria a discuté avec ses amis (Amélie, Charlotte, Diana, Elsa et Mia) (lundi, mardi, mercredi, jeudi et vendredi). Chaque jour, l'un d'eux a écrit une évaluation en classe dans une matière différente (mathématiques, physique, chimie, latin ou musique). Ils vivent chacun dans une ville différente (Celle, Cologne, Mayence, Nuremberg et Zeitz). Le week-end, Maria a donné à son frère les informations suivantes:

  1. Charlotte a écrit l’évaluation des maths ou de la musique jeudi.
  2. Diana de Zeitz a écrit l’évaluation en latin.
  3. Amélie vit dans la plus petite ou la plus grande des villes.
  4. Le lendemain de l’évaluation de chimie, Elsa, qui ne vit pas à Celle, a eu l’évaluation de mathématiques.
  5. Mia vit à Mayence.
  6. L’évaluation en musique a été écrite trois jours après celle du latin.
  7. Le vendredi, Maria discute avec son amie, qui vit soit à Mayence soit à Nuremberg.

Qui vit où et a écrit quelle évaluation quand?
Six points bleus
Les filles, qui vivent toutes dans la rue principale (les numéros de maison sont 11, 13, 15, 17 et 19) ont également aidé à rénover l'appartement un des jours de la semaine (salle de bains, chambre d'enfants, balcon, cuisine, couloir).

  1. La fille du numéro 15 a aidé à la cuisine, c'était un jour ou deux après l’action d’Amélie.
  2. Diana vit dans la maison avec le numéro 19.
  3. Elsa, qui ne vit pas dans le numéro 13, a aidé avec le couloir. C'était après l'action avec la chambre des enfants.
  4. Mercredi, on a travaillé dans la maison numéro 11.
  5. Le balcon a été réalisé vendredi, mais pas par Charlotte.
  6. Jeudi, Mia était active, son numéro de maison diffère de 4 du numéro de la maison de la fille qui a aidé lors de la rénovation de la salle de bain.

Qui vit où et a aidé quand?
6 points rouges

--> Enigma <--

esp

637 - problema de lógica

María ha chateado con sus amigas (Amelie, Charlotte, Diana, Elsa y Mia) desde lunes hasta viernes (lunes, martes, miércoles, jueves, viernes). Cada día una de las chicas hizo un examen en una materia distinta (matemáticas, física, química, latín, música). Cada una de las chicas vive en otra ciudad que las otras (Celle, Colonia, Maguncia, Núremberg, Zeitz). El fin de semana María le dio las siguientes informaciones a su hermano: 

  1. El jueves Charlotte hizo el examen o de matemáticas o de música. 
  2. Diana que vive en Zeitz hizo el examen de latín.
  3. Amelie vive o en la ciudad más pequeña o en la más grande.
  4. Elsa no vive en Celle y hizo el examen de matemáticas el día después del examen de química. 
  5. Mia vive en Maguncia.
  6. El examen de música se hizó tres días después del examen de latín.
  7. El viernes María chateaba con sus amigas que viven o en Maguncia o en Núremberg. 

Entonces, ¿quién vive dónde? y ¿cuándo hizo cuál examen? 6 puntos azules.

Casualmente, las chicas que todas viven en la calle principal (números 11, 13, 15, 17 y 19) también todas ayudaron en la renovación de la vivienda (baño, cuarto de los niños, balcón, cocina, pasillo) a uno de los días de la semana. 

  1. La chica del número 15 ayudó en la cocina. Esto era un o dos días después del esfuerzo de parte de Amelie.
  2. Diana vive en la casa con el número 19.
  3. Elsa no vive en la 13 y ayudó en el pasillo. Esto pasó el día después de la acción en el cuarto de los niños.
  4. El miércoles se trabajó en la casa con el número 11.
  5. El viernes se trabajó en el balcón, pero sin Charlotte.
  6. El jueves Mia era activa. El número de su casa se distingue por 4 del número de casa de la ayudante en la renovación del baño.

Ahora, ¿quién vive en qué casa y ayudó cuando y en qué parte de la vivienda? 6 puntos rojos

Maguncia = Mainz,
Colonia = Köln,
Núremberg = Nürnberg

--> Enigma <--

en

637 logical task
Maria chatted with her friends (Amelie, Charlotte, Diana, Elsa, und Mia) on the following days: Monday, Tuesday, Wednesday, Thursday and Friday. On every day one of them took a test in another subject (maths, physics, chemistry, Latin, music). They all live in a different city (Celle, Köln, Mainz, Nürnberg, Zeitz). On the weekend Maria gave the following information to her brother:
1. On Thursday Charlotte took either maths or music.
2. Diana from Zeitz took the math-test. .
3. Amelie lives in the smallest or in the biggest city.
4. On the day after the chemistry-test Elsa, who doesn´t live in Celle, took the math-test.
5. Mia lives in Mainz.
6. The music-test was taken 3 days after the Latin-test.
7. On Friday Maria chatted with her friend, who either lives in Mainz or in Nürnberg.
Who lives where? Who took when, which test? - 6 blue points
The girls, who coincidentally all live in the same main street (house numbers 11, 13, 15, 17, and 19) helped renovating the flat on one of the weekdays (bathroom, children’s room, balcony, kitchen, hallway).
1. The girl from number 15 helped in the kitchen, this was one or two days after the help of Amelie.
2. Diana lives in the house with the number 19.
3. Elsa, who doesn`t live in number 13, helped in the hallway. This was after the project in the children`s room.
4. On Wednesday it was worked inside the house with number 11.
5. On Friday they worked on the balcony, but not the one from Charlotte.
6. On Thursday Mia was active, her house number differs by 4 from the house number of the person, who helped renovating the bathroom.
Who lives where? Who helped whom and when? – 6 red points

--> Enigma <--

it

637 Compito di logica
Maria ha chattato con le sue amiche (Amelie, Charlotte, Diana, Elsa e Mia). Ogni giorno (lunedì, martedì, mercoledì, giovedì e venerdì) quando Maria chattava con lei, una delle amiche aveva scritto un tema in classe diverso (matematica, fisica, chimica, latino, musica). Tutte le amiche vivono in città diverse (Celle, Colonia, Magonza, Norimberga, Zeitz). Il fine settimana, Maria dava le informazioni seguenti a suo fratello:
1. Giovedì Charlotte aveva il tema di classe o di matematica o di musica.
2. Diana di Zeitz aveva il tema di latino.
3. Amelie vive o nella città più piccola o più grande.
4. Un giorno dopo il tema di chimica, Elsa, che non vive a Celle, aveva il tema di matematica.
5. Mia abita a Magonza.
6. Il tema di musica aveva luogo tre giorni dopo il tema di latino.
7. Venerdì, Mia chattava con sua amica che abita o a Magonza o a Norimberga.
Chi abita dove e aveva quando quale tema di classe? – 6 punti blu
1. Le ragazze, che per caso abitano tutte nella “Strada principale” (civici 11, 13, 15, 17 e 19) aiutavano anche a uno dei giorni della settimana a rinnovare l’ appartamento (bagno, stanza dei bambini, balcone, cucina, corridoio).
2. La ragazza del civico 15 aiutava nella cucina; questo aveva luogo uno o due giorni dopo l’ impiego di Amelie.
3. Diana abita nella casa col civico 19.
4. Elsa, che non abita nella 13, aiutava nel corridoio. Questo aveva luogo dopo l’ azione nella stanza dei bambini.
5. Mercoledì si lavorava nella casa col civico 11.
6. Venerdì veniva fatto il balcone, ma non col’ aiuto di Charlotte.
Giovedì lavorava Mia; il suo civico si differenzia di 4 di quello dell’ aiutante alla rinnovazione del bagno.
Chi abita dove ed aiutava quando in quale stanza? – 6 punti rossi.

--> Enigma <--

Lösung/solution/soluzione/résultat:

Viele haben die Vorlage zum Rätseln verwendet, deshalb hier nur das Endergebnis:

Amelie

Köln

Dienstag

Chemie

Charlotte

Celle

Donnerstag

Musik

Diana

Zeitz

Montag

Latein

Elsa

Nürnberg

Mittwoch

Mathe

Mia

Mainz

Freitag

Physik

 

Amelie

Mittwoch

Bad

Nummer 11

Charlotte

Montag

Kinderzimmer

Nummer 13

Diana

Freitag

Balkon

Nummer 19

Elsa

Dienstag

Flur

Nummer 17

Mia

Donnerstag

Küche

Nummer 15

 

Die Jagdsaison nach einem Stammbruchquadrat mit magischer Konstante größer als 1/140 ist eröffnet, gerne auch einen Beweis, dass es kein solches Quadrat gibt.


Aufgabe 2

638. Wertungsaufgabe

638

„Deine Konstruktion gefällt mir“, sagte Mike zu Lisa. „Das Schöne daran ist auch, dass man ganz einfach erkennt wie das gemacht wurde. Das rechtwinklige Dreieck ABC ist das „berühmte“ 3-4-5 cm Dreieck. Es gibt rote und gelbe Quadrate, die nach rechts hin immer kleiner werden.“, erwiderte Lisa, die sich über das Lob von Mike freute.
Für 6 blaue Punkte sind die Umfänge und Flächeninhalte der 4 roten Quadrate zu berechnen.
6 rote Punkte gibt es für die Berechnung der Strecke AD und die Größe des Flächeninhalte aller Quadrate, wenn man die Konstruktion „unendlich“ oft bis zum Punkt D ausführt.

--> Symbolrätsel <--
Termin der Abgabe 23.04.2020. Ultimo termine di scadenza per l´invio è il 23.04.1920. Deadline for solution is the 23th. April 2020. Date limite pour la solution 23.04.2020. Soluciones hasta el 23.04.2020. Beadási határidő 2020.04.23.

hun

638

Tetszik a szerkesztésed – mondta Mike Lizának. Az egészben az a legjobb, hogy egész egyszerű felismerni, hogyan készült. A jobbszögű háromszög ABC a „híres“ 3-4-5 cm háromszög. Aztán vannak a piros és sárga négyzetek, amik jobbra egyre kisebbek lesznek – magyarátra Liza nagyon örülve Mike dicséretének.
6 kék pontért számolja ki a 4 piros négyzet kerületét és területét.
6 piros pontot ér, ha kiszámítja az AD szakasz hosszát és a területét az összes négyzetnek, amennyiben a szerkesztést a D pontig folytatná.

--> Enigma <--

fr

638

J'aime ton design », a déclaré Mike à Lisa. "La bonne chose est que tu peux facilement voir comment cela a été fait. Le triangle rectangle ABC est le "fameux" triangle de 3-4-5 cm. Il y a des carrés rouges et jaunes qui deviennent plus petits vers la droite. », a répondu Lisa, qui était heureuse des louanges de Mike.
Les circonférences et les zones des 4 carrés rouges doivent être calculées pour 6 points bleus.
Il y aura 6 points rouges pour le calcul de la distance AD et de la taille de l'aire de tous les carrés si la construction est réalisée "à l'infini" jusqu'au point D.

--> Enigma <--

esp

638

“Me gusta esta construcción.”, le dijo Mike a Lisa. “Lo que más me gusta es que se puede reconocer fácilmente como se hizo.” El triángulo rectángulo ABC es el famoso triángulo con los ángulos de 3-4-5 cm. Hay cuadrados rojos y amarillos que se disminuyen hacia la derecha”, replicó Lisa.
Para 6 puntos azules se tiene que calcular los perímetros y áreas de los 4 cuadrados rojos.
6 puntos rojos se reciben para el cálculo del segmento rectilíneo AD y del tamaño de las áreas de todos los cuadrados, si se continua la construcción infinitamente hasta el punto D. 

--> Enigma <--

en

638

“I like this construction“, said Mike to Lisa. “The beauty about it is, that you can easily recognize how it has been constructed. The rectangular triangle ABC is the “famous“ 3-4-5 cm triangle. There are red and yellow squares, which are getting smaller the more you move to the right.“, answered Lisa, who was very delighted about the positive feedback from Mike.
For 6 blue points you have to calculate perimeter and area of the four red squares.
You get 6 red points for calculating the line AD and the area of all squares together, if you continue the construction “infinite” to point D.

--> Enigma <--

it

638

“La tua costruzione mi piace”, Mike diceva a Lisa. “E si capisce facilmente com’ è stata fatta. Il triangolo rettangolare è il ‘famoso’ coi lati 3-4-5 cm. Ci sono quadrati rossi e gialli che, andando verso destra, diventono sempre più piccoli“, Lisa replicava, essendo contenta di essere lodata di Mike.
Per sei punti blu si calcolano le circonferenze e le superfici dei 4 quadrati rossi.
Sei punti rossi vengono dati per la calcolazione del segmento AD e della superficie comune di tutti i quadrati, se si continua la costruzione ‘infinitamente’ fino al punto D.

--> Enigma <--

Lösung/solution/soluzione/résultat:

Musterlösung von Hans, danke. --> pdf <--

 


Aufgabe 3

639. Wertungsaufgabe

 

„Mit den Zahlen von 1; 2; … bis 9 lässt sich ja schnell ein magisches Quadrat erstellen“, sagte Mike zu Bernd. „Klar, wenn man von Spiegelung und Drehung absieht, gibt es aber auch nur eins“, erwiderte Bernd.
Für ein solches magisches Quadrat gibt es einen blauen Punkt.. Zu zeigen ist, dass bei der Multiplikation jeder Zahl des gefundenen Quadrates mit der selben ganzen Zahl g das so entstehende Quadrat auch magisch ist. Noch zwei blaue Punkte.
Ist es möglich aus den Brüchen 1/1, ½, …, 1/9 auch ein magisches Quadrat zu erstellen?
Für das Finden eines solchen Quadrates oder der Widerlegung der Existenz gibt es 3 rote Punkte. Für weitere drei rote Punkte gilt es ein anderes 3x3 magisches Quadrat zu finden, welches nur Stammbrüche - also die Form 1/n – aufweist.

 -> Symbolrätsel <--

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Termin der Abgabe 30.04.2020. Ultimo termine di scadenza per l´invio è il 30.04.1920. Deadline for solution is the 30th. April 2020. Date limite pour la solution 30.04.2020. Soluciones hasta el 30.04.2020. Beadási határidő 2020.04.30.

hun

„Az 1,2, …9-ig terjedő számokkal egy mágikus négyzetet lehet létrehozni” – mondta Mike Berndnek. „ Világos, de ha a tükrözéstől és forgatástól eltekintünk, akkor csak egyet” – ellenkezett Bernd. Egy ilyen mágikus négyzetért egy kék pont jár. Igazolni, hogy a talált négyzet minden számának ugyanazzal az egész számmal (g) történő megtöbbszörözésével ugyancsak egy mágikus négyzet jön létre, még két kék pontot hoz.
Lehetséges az 1/1, ½, …. 1/9 törtekből is egy mágikus négyzetet csinálni? Ha talál egy ilyen négyzetet, vagy megcáfolja a létezését, 3 piros pontot kap. További 3 piros pontért találjon egy másik 3x3 mágikus négyzetet, melynek a törzshányadosa 1/n.

-> Enigma <--

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

fr

„Avec les nombres de 1; 2; … jusqu'à 9, tu peux rapidement créer un carré magique », a expliqué Mike à Bernd. "Bien sûr, si on ignore la réflexion et la rotation, il n'y a qu'un seul", a répondu Bernd.
Il y a un point bleu pour un tel carré magique. Il faut montrer que lorsque chaque numéro du carré trouvé est multiplié par le même chiffre entier g, le carré résultant est aussi magique. Il y aura deux points bleus supplémentaires.
Est-il possible de créer un carré magique à partir des fractions 1/1, ½, ..., 1/9?
Il y a 3 points rouges pour trouver un tel carré ou pour réfuter l'existence. Pour trois points rouges supplémentaires, il faut trouver un autre carré magique 3x3, qui n'a que des fractions - c'est-à-dire la forme 1/n.

-> Enigma <--

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

esp

“Con los números de 1; 2; … hasta 9 se puede construir un cuadrado mágico rápidamente”, le dijo Mike a Bernd. “Claro, no teniendo en cuenta reflejo ni rotación sólo hay uno”, replicó Bernd.
Para un cuadrado mágico así solo se recibe un punto azul. Hay que demostrar que multiplicando cada número del cuadrado encontrado con sí mismo (número entero g), el cuadrado que se deriva también es un cuadrado mágico. Para esto se recibe dos puntos azules más.
¿Es posible construir un cuadrado mágico con las fracciones 1/1, ½ …, 1/9? Para el encuentro de semejante cuadrado o el rebatimiento de la existencia de semejante cuadrado se da 3 puntos rojos. Para tres puntos rojos más se tiene que encontrar otro cuadrado mágico 3x3 más que solo tiene fracciones unitarias (de la forma 1/n). 

-> Enigma <--

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

en

„Using the numbers from 1; 2; … to 9 you can easily create a magical square“, Mike told Bernd. „Sure, if you desist from reflection and rotation, there is only one“, answered Bernd.
For such a magical square you get one blue point. If you show that through multiplication of every number of this new found magical square with the same integer number g, a new magical square emerges, you get another two blue points.
Is it possible to create another magical square from the fractions 1/1, ½, …, 1/9 ?
For finding such a square or the proof of its nonexistence you get three red points. For three more red points you have to find another 3x3 magical square, which only contains unit fractions – with the form 1/n.

-> Enigma <--

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

it

“Coi numeri 1; 2; … fino a 9 si può inventare facilmente un quadrato magico”, Mike diceva a Bernd. “Certo, ma laciando a parte rispecchiamenti e rotazioni, ne esiste però solo uno”, Bernd replicava.
Per un tale quadrato magico viene dato un punto blu. Per altri due punti blu è da dimostrare che, moltiplicando ogni cifra del quadrato trovato collo stesso numero intero g, anche il quadrato sorgente è magico.
È possible trovare un quadrato magico anche per le frazioni 1/1, ½, …, 1/9? Per o la scoperta di un tale quadrato magico o la prova che l’ esistenza di un tale sia impossibile, vengono dati 3 punti rossi.
Per altri tre punti rossi c’ è da trovare un altro quadrato magico 3x3, che contiene solo frazioni tipo 1/n.

-> Enigma <--

 https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Lösung/solution/soluzione/résultat:

Es wurde einige Quadrate geschickt, die "teil"-magisch waren, also welche bei den Zeilen und Spalten passten, aber nicht die Diagonalen, das sind dann auch solche, wo die 5 nicht in der Mitte steht.
Im Zentrum der Lösung eines magischen Quadrates steht natürlich die magische Konstante X, die Zahl, die sich als Summe ergeben muss. Die magische Konstante X  zu finden ist nicht schwer, alle zu verwendeten Zahlen werden addiert und durch die Anzahl der Spalten dividiert. 1+2+3...+15= 45 --> 45/3 = 15 = X. Multipliziert man jede Zahl eines gefundenen magischen Quadrates mit einer ganzen Zahl G, so ändert das an der Magie nichts. Mittels Distributivgesetz lässt sich schnell zeigen, dass die magisches Konstante dann einfach auch nur 15*G ist.
Zu rot: 1/1 + 1/2 + ... + 1/9 ist kleiner als 3, damit wäre die X kleiner als 1, also könnte 1/1 nicht dabei sein - Widerspruch. (Das ist eines der Argumente, um zu zeigen, dass aus diesen Stammbrüchen kein magisches Quadrat gebildet werden kann.)
Die Überlegung mit dem obigen G lässt sich natürlich auch auf Brüche anwenden. Man braucht also nur jede Zahl eines gefundenen magischen Quadrates mit einem Bruch b der Form 1/c multiplizieren. Allerdings muss c so beschaffen sein, dass nach dem Kürzen der Zähler 1 wird. Die häufigste Lösung war c = 2520 (KgV der Zahlen 1 bis 9), gefolgt von c = 362880 = 9!. Jedes positiv ganzzahliges Vielfaches von 2520 erfüllt dann die Bedingung.
Ist c = 2520 so ist X= 15*b= 1/168. Für c =9! folgt X= 1/24192 (deutlich kleiner als 1/168).
Ob 1/168 die größte magische Konstante ist, die auf ein Stammbruchquadrat führt ist damit nicht gesagt. Und es zeigte sich, dass es ein solches Quadrat gibt. Gefunden von Helmut, danke. Magische Konstante ist 1/40:

1/504 1/252 1/840
1/630 1/420 1/315
1/280 1/1260 1/360

Aufgabe 4

640. Wertungsaufgabe

 

640

„Sind die Sechsecke alle gleichgroß?“ „Das siehst du richtig, lieber Bruder. Es sind je drei grüne und drei rote regelmäßige Sechsecke mit einer Kantenlänge von 4 cm. Die blauen Trapeze im Inneren der Figur sind auch untereinander gleich. Die Strecke AC ist 1 cm lang“, sagte Maria zu Bernd.
Wie groß sind Umfang und Flächeninhalt des inneren weißen Sechsecks? - 4 blaue Punkte

Wie lang müsste AC sein, wenn der Flächeninhalt des weißen Sechsecks 10 % eines roten Sechsecks sein soll? 3 rote Punkte

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Termin der Abgabe 07.05.2020. Ultimo termine di scadenza per l´invio è il 07.05.1920. Deadline for solution is the 7th. May 2020. Date limite pour la solution 07.05.2020. Soluciones hasta el 07.05.2020. Beadási határidő 2020.05.07.

hun

640

„A hatszögek mind egyenlő nagyságúak?” „ Ez jól látod, kedves tesó. Mindhárom zöld és piros szabályos hatszög élhossza 4 cm. A kék trapézok is a forma belsejében egyenlő nagyságúak. Az AC szakasz 1 cm hosszú. „– mondta Mária Berndnek. Mekkora a kerülete és a területe a belső fehér hatszögnek? – 4 kék pont
Mekkora legyen az AC szakasz hossza, hogy a fehér hatszög területe 10%-a legyen a piros hatszögnek? 3 piros pont

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

fr

640

"Les hexagones sont-ils tous de la même taille? "" Bien vu, cher frère. Il y a trois hexagones réguliers verts et trois rouges avec une longueur de bord de 4 cm. Les trapèzes bleus à l'intérieur de la figure sont également identiques les uns aux autres. AC mesure 1 cm de long", a expliqué Maria à Bernd.
Quelle est la taille et la surface de l'hexagone blanc intérieur? - 4 points bleus
Quelle longueur AC devrait-il avoir si la zone de l'hexagone blanc doit être de 10% d'un hexagone rouge? 3 points rouges

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

esp

640

“¿Estos hexágonos todos son del mismo tamaño?” – “Lo ves correctamente, querido hermano. Son tres hexágonos verdes y tres rojos, todos regulares, todos con la longitud de canto de 4 cm. Los trapecios azules en el interior de la figura también son idénticos. El segmento rectilíneo AC mide 1 cm”, le dijo María a Bernd.
¿De qué tamaño son perímetro y área del hexágono blanco en el interior de la figura? – 4 puntos azules.
Si el área del hexágono blanco mide exactamente 10 % de un hexágono rojo, ¿de qué longitud tendría que ser el segmento rectilíneo AC? – 3 puntos rojos.

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

en

640

„Do these hexagons all have the same size?“ „That’s correct, dear brother. There are each three green and three red regular hexagons with an edge length of 4 cm. The blue trapeziums on the inside of the figure are equal to each other too. The line segment AC is 1 cm long“, Maria told Bernd.
How big are perimeter and area of the inner white hexagon? – 4 blue points
How long would AC have to be, if the area of the white hexagon was 10 % of a red hexagon? 3 red points

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

it

640

“Sono tutti uguali gli esagoni?“ – „Sì, giusto, caro fratello. Sono tre esagoni regolari verdi e tre rossi, tutti di una lunghezza del lato di 4 cm. Anche i trapezi blu al centro sono tutti uguali. La lunghezza del segmento AC è 1 cm”, Maria diceva a Bernd.
Qual’ è la misura della circonferenza e della superficie del’ esagono bianco all’ interno? – 4 punti blu
Quale misura dovrebbe avere il segmento AC, per causare che la superficie dell’ esagono bianco sia 10% della superficie di un esagono rosso? – 3 punti rossi

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Lösung/solution/soluzione/résultat:

"konzentrierte" Lösungen von Hans, pdf, und Kurt, pdf, danke.


Aufgabe 5

641. Wertungsaufgabe

„Das sind aber viele Zahlen auf deinem Zettel.“, meinte Bernd zu Mike. „Na ja, ich bin am Probieren“. Mike hat irgendwelche 4 vierstellige Zahlen notiert.. Dann addiert er die Ziffern der gewählten Zahl (Quersumme) zwei mal zur vierstelligen Zahl dazu. Das Ergebnis ist in seinen Beispielen immer durch 3 teilbar. Gilt das für alle vierstelligen Zahlen? (Nachweis der Gültigkeit. oder drei Gegenbeispiele) 3 blaue Punkte. Beispiel: 3412 → 3412 + 2*(3+4+1+2)= 3432, das Ergebnis ist durch 3 teilbar.
Es gilt a + b = 1 und a² + b² = 2. Wie lautet das Ergebnis von a^4 + b^4 ? 3 rote Punkte
https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Termin der Abgabe 21.05.2020. Ultimo termine di scadenza per l´invio è il 21.05.1920. Deadline for solution is the 21th. May 2020. Date limite pour la solution 21.05.2020. Soluciones hasta el 21.05.2020. Beadási határidő 2020.05.21.

hun

„Ez aztán jó sok szám a papírodon.” – mondta Bernd Mike-nak. „ Hát igen, csak próbálgatom.” Mike tetszőleges 4 négyjegyű számot írogat. Aztán hozzáadja a kiválasztott szám számjegyeinek kétszeresét a négyjegyű számhoz. Az eredmény az ő esetében mindig osztható hárommal. Igaz ez minden négyjegyű számra? (Bizonyítás vagy cáfolás) 3 kék pont.
Példa: 3412 → 3412 +2*(3+4+1+2)= 3432, az eredmény osztható hárommal.
Érvényes az a + b = 1 és a² + b² = 2.
Mi az eredménye az a^4 + b^4-nek? 3 piros pont
https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

fr

"Mais il y a beaucoup de chiffres sur ta feuille de papier", a expliqué Bernd à Mike. "Eh bien, j'essaye". Mike a noté 4 nombres à quatre chiffres, puis il ajoute deux fois les chiffres du numéro sélectionné (somme de contrôle) au nombre à quatre chiffres. Dans ses exemples, le résultat est toujours divisible par 3. Cela s'applique-t-il à tous les numéros à quatre chiffres? (Preuve de validité. Ou trois contre-exemples) 3 points bleus. Exemple: 3412 → 3412 + 2 * (3 + 4 + 1 + 2) = 3432, le résultat est divisible par 3.
Si a + b = 1 et a² + b² = 2. Quel est le résultat de a^4 + b^4? 3 points rouges
https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

esp

“¡Qué muchos números tienes en tu papelito!”, le dijo Bernd a Mike. “Pues si, estoy probando…” Mike ha notado algunos números de cuatro cifras. Después suma las cifras del número elegido y adiciona esta suma dos veces al número elegido de cuatro cifras. En sus ejemplos, el resultado siempre es divisible por 3. ¿Esto vale para todos los números de cuatro cifras? Para la comprobación de la validez o tres ejemplos contrarios se recibe 3 puntos azules.
Ejemplo: 3412 → 3412 + 2*(3+4+1+2) = 3432, el resultado es divisible por tres.
Si es válido a + b = 1 y a² + b² = 2, ¿cómo sería el resultado de a+ b? – 3 puntos rojos.
https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

en

„Those are a lot of numbers on your sheet.“, Bernd told Mike. „Yeah, I’m still trying…“. Mike has noted down some four-digit numbers. Then he adds the digits of the chosen number (cross sum) two times to the four-digit number. The result of his examples can always be divided by 3. Is this true for all four-digit numbers? (proof of existence or three counterexamples) - 3 blue points. Example: 3412 → 3412 + 2*(3+4+1+2)= 3432, the result can be divided by three.
The following things are given: a + b = 1 and a² + b² = 2. What is the result of a^4 + b^4 ? - 3 red points
https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

it

“Quanti numeri hai notato sul tuo foglietto!”, Bernd diceva a Mike. “Solo perchè sto provando.” Mike ha notato numeri a quattro cifre qualsiasi. Poi sommava la sua somma delle cifre due volte al numero a quattro cifre. Il risultato negli esempi suoi era sempre divisibile per 3. Vale per ogni numero a quattro cifre? – Prova della validità o tre controesempi: 3 punti blu.
Esempio: 3412 → 3412 + 2*(3+4+1+2)= 3432, il risultato è divisibile per 3.
Sia a + b = 1 e a2 + b2 = 2. Qual’ è poi il risultato di a4 + b4 ? – 3 punti rossi

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Lösung/solution/soluzione/résultat:
Blau: die Behauptung stimmt: Die vier Ziffern der vierstelligen Zahl seinen a, b, c und d. Die Zahl selber lässt sich dann als 1000a + 100b + 10c + d "auffassen". Aus den Ziffern wird die Quersumme gebildet --> a + b +c +d.
Addiere ich nun die doppelte Quersummer zur Zahl --> 1000a + 100b + 10c + d + 2(a + b +c +d) ergibt sich. 1002a + 102b +12c +3d = 3(334a + 34b + 4c +d). Das heißt das Ergebnis ist das Dreifache einer natürlichen Zahl und somit durch 3 teilbar.  Anmerkung die Aufgabe lässt sich leicht verallgemeinern. Die Summer aus einer natürlichen Zahl und ihrer doppelten Quersumme ist stets durch 3 teilbar.
rot:  b=1-a --> a² + (a-1)² = 0, diese quadratische Gleichung lässt sich einfach lösen. Die so ermittelten Werte für a und b führen dann auf a4 + b4 = 3,5.

Bearbeitung der Aufgabe von H. Walser, danke.

http://www.walser-h-m.ch/hans/Miniaturen/T/Teilbarkeit_durch_3_2/Teilbarkeit_durch_3_2.htm

http://www.walser-h-m.ch/hans/Miniaturen/T/Teilbarkeit_durch_3_2/Teilbarkeit_durch_3_2.pdf

und 

http://www.walser-h-m.ch/hans/Miniaturen/S/Summe_von_Potenzen/Summe_von_Potenzen.htm

http://www.walser-h-m.ch/hans/Miniaturen/S/Summe_von_Potenzen/Summe_von_Potenzen.pdf

Die zweite Aufgabe (a+b=1 etc) führt auf eine Fibonacci-Folge und eine logarithmische Spirale.


Aufgabe 6

642. Wertungsaufgabe

„Ist das eine Briefmarke aus der Sammlung vom Opa?“, fragte Maria. „Das stimmt. Es sind viele Stellen von Pi zu erkennen, aber auch ein Rechteck, welches vollständig und lückenlos durch Quadrate bedeckt ist.“, erwiderte ihr Bruder.

642 marke

Die untere Kante ist 177 Einheiten lang, die linke Kante ist 176 Einheiten lang, also fast ein Quadrat. Das große grüne Quadrat hat eine Kantenlänge von 77 Einheiten. Für die Größe der anderen Quadrate gibt es jeweils einen roten Punkt.

Das blaue Rechteck ist auch auch mit Quadraten bedeckt. Das Rechteck ist 13 x 11 cm groß. Das kleinste Quadrat hat eine Kantenlänge von 1 cm. Wie lang sind a, b c und d? Je zwei blaue Punkte.

642

extra: https://www.schulmodell.eu/images/stories/mathe/wochenaufgabe/642-zusammendruck.jpg

Termin der Abgabe 28.05.2020. Ultimo termine di scadenza per l´invio è il 28.05.1920. Deadline for solution is the 28th. May 2020. Date limite pour la solution 28.05.2020. Soluciones hasta el 28.05.2020. Beadási határidő 2020.05.28.

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

hun

„Ez egy bélyeg nagyapa gyűjteményéből?” Kérdezte Mária. „Igen, sok helyen fel lehet ismerni a Pi számot, de van egy négyszög, ahol teljesen és hiánytalanul négyzetekkel fedett.

642 marke

Az alsó széle 177, a bal széle 176 egység hosszú, azaz majdnem egy négyzet. A nagy zöld négyzet éle 77 egység. A többi négyzet nagyságáért egyenként egy piros pont jár.

A kék négyszög is négyzetekkel borított. A négyszög 13x11 cm nagy. A legkisebb négyzet élhossza 1 cm. Milyen hosszú a, b, c és d? Darabonként kék pont

642

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

fr

"Est-ce un timbre de la collection de grand-père?", a demandé Maria. "C'est ça. Tu peux voir de nombreux endroits de Pi, mais aussi un rectangle qui est entièrement et complètement recouvert de carrés."

642 marke

Le bord inférieur est long de 177 unités, le bord gauche est long de 176 unités, presque un carré. Le grand carré vert a une longueur de bord de 77 unités. Il y aura un point rouge pour la taille des autres carrés.
Le rectangle bleu est également recouvert de carrés. Le rectangle mesure 13 x 11 cm. Le plus petit carré a une longueur de bord de 1 cm. Quelle est la longueur de a, b c et d? Deux points bleus pour chaque réponse.

642

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

esp

“¿Es esto un sello de la colección del abuelo?”, preguntó María. “Sí, es verdad. Se pueden reconocer muchos decimales de Pi, pero también un rectángulo que es completamente cubierto de cuadrados.”

642 marke

El canto inferior mide 177 unidades de medida, el canto izquierdo 176 unidades, entonces se trata casi de un cuadrado. El gran cuadrado verde tiene la longitud de canto de 77 unidades de medida. Para el tamaño de los demás cuadrados cada vez se recibe un punto rojo.
El rectángulo azul también es cubierto de cuadrados. El rectángulo mido 13 x 11 cm. El cuadrado más pequeño tiene la longitud de cantos de 1 cm. ¿Cuánto miden a, b, c y d? Cada vez dos puntos azules.

642

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

en

„Is this a stamp from your collection, grandpa?“, asked Maria. „That’s right. There you can see a lot of Pi digits. But there is one rectangle too, which is completely and without a gap, covered by squares.“

642 marke

The lower edge is 177 units long, the left edge is 176 units long. So it’s nearly a square. The big green square has an edge length of 77 units. For the size of the other squares you will get one red point each.
The blue rectangle is covered by squares too. The rectangle is 13 x 11 cm big. The smallest square has an edge length of 1 cm. How long are a, b c and d? You will get two blue points each.

642

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

it

“È un francobollo della collezione del nonno?”, chiedeva Maria. “Hai ragione. In essa si individuano tante cifre di Pi, ma anche un rettangolo che è coperto completamente e ininterrottamente di quadrati.”

642 marke

Il lato in basso ha una lunghezza di 177 unità, quello a sinistra una di 176 unità, quindi appena un quadrato. Il grande quadrato verde ha una lunghezza del lato di 77 unità. Per le lunghezze del lato degli altri quadrati si riceve un punto rosso per ciascuna.
Anche il rettangolo blu è coperto di quadrati. Il rettangolo ha una misura di 13 x 11 cm. Il quadrato più piccolo ha una lunghezza del lato di 1 cm. Qual’ è la lunghezza di a, b, c e d? – Due punti blu ciascuno.

642

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Lösung/solution/soluzione/résultat:
Anemrkung auch ohne die Vorgabe eines Weres für die Länge sind die Aufgaben eindeutig lösbar( aber aufwändiger).
Musterlösung von Reinhold M., danke.
Ich bezeichne die Seitenlängen des größten roten, gelben (orange), grünen und blauen Quadrats mit r1, o1, g1 bzw. b1, die der nächstkleineren mit r2, o2, g2 bzw. b2 sowie die der kleinsten (ohne grün) mit r3, o3 bzw. b3.
Dann folgt schrittweise, wobei ich jeweils in untenstehender Tabelle vermerke, ob Breiten oder Höhen der entsprechenden "Quadrate" verwendet wurden:
 g1 = 77,
 r1 = 176 - g1 = 99,
 o1 = 177 - r1 = 78,
 b2 = r1 - o1 = 21,
 r2 = o1 - b2 = 57,
 b1 = 176 - o1 - r2 = 41,
 o2 = 177 - g1 - r2 = 43,
 r3 = g1 - o2 = 34,
 o3 = 177 - g1 - r3 - b1 = 25,
 g2 = b1 - o3 = 16,
 b3 = o3 - g2 = 9,
und verwendet wurden
 r1 Breite Höhe
 o1 Breite Höhe
 g1 Breite Höhe
 b1 Breite Höhe
 r2 Breite Höhe
 o2 Breite Höhe
 g2 Breite Höhe
 b2 Breite Höhe
 r3 Breite Höhe
 o3 Breite Höhe
 b3 Breite.
Damit tatsächlich alles in Ordnung ist mit der Konstruktion ist also noch zu zeigen, dass auch die Höhe von b3 9 ist:
 b3 + o3 = 34 = r3,
also o.k.
Die Größen der 11 Quadrate (einschließlich des gegebenen) sind also in der Sortierung von klein nach groß
 9, 16, 21, 25, 34, 41, 43, 57, 77, 78 und 99 Einheiten.

Beim zweiten Rechteck gilt zunächst a < d < c, also a + d < c + d, folglich
 (1) a + d = 11,
 (2) b + c = 11,
 (3) c + d = 13,
 (4) a + 2b = 13.
Mit
 (5) c = d + 1
folgt aus (3)
 d = 6
und damit aus (1)
 a = 5
sowie aus (5)
 c = 7
und damit schließlich aus (2) oder (4)
 b = 4.
Es gilt also (in cm)
 (a, b, c, d) = (5, 4, 7, 6).


Aufgabe 7

643. Wertungsaufgabe

„Übst du Kopfrechnen?“, fragte Maria ihren Bruder. „Ja, ich addiere jetzt immer zehn aufeinanderfolgende ganze Zahlen. Ich starte zum Beispiel mit -12 und dann plus -11, plus -10, … plus -3. Oder ich starte mit -2 oder aber auch 100.“
Die Ergebnisse von Bernd sind anzugeben. Kann man eine Startzahl wählen, so dass das Ergebnis 0 ist? - 3 blaue Punkte.
Maria war das einfache addieren zu langweilig und hat nach einer Formel gesucht und glaubt auch eine gefunden zu haben. Sie startet mit einer ganzen Zahl g und nutzt für Summe s eine Formel. Für das Finden der Formel und den Beweis des Funktionierens gibt es 3 rote Punkte. Wenn man zeigt, dass es eine solche Formel nicht geben kann, gibt es auch 3 rote Punkte.

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Termin der Abgabe 04.06.2020. Ultimo termine di scadenza per l´invio è il 04.06.1920. Deadline for solution is the 4th. June 2020. Date limite pour la solution 04.06.2020. Soluciones hasta el 04.06.2020. Beadási határidő 2020.06.04.

hun

„A fejben számolást gyakorlod?“ – kérdezte Mária a bátyját. „Igen, összeadok tíz egymást követő egész számot. Például a -12-vel kezdem és hozzáadok -11-et, -10-et,----3-at. Vagy a -2-vel kezdem, vagy akár a 100-zal.“ Az eredményeket Bern megadja. Lehet úgy kezdő számot választani, hogy az eredmény 0 legyen? – 3 kék pontMáriának az egyszerű összeadás túl unalmas volt, így keresett egy képletet amiről azt gondolta, meg is találta. Ez egy egész számmal, g-vel kezdődik és az összeg „s“-hez egy képletet használ. A képletért és annak bizonyításáért, hogy ez működik, 3 piros pont jár. Amennyiben azt bizonítja, hogy nem létezik ilyen képlet, azét is 3 piros pontot kap.

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

fr

"Pratiques-tu l'arithmétique mentale?", a demandé Maria à son frère. "Oui, j'additionne toujours dix chiffres entier consécutifs. Par exemple, je commence par -12 puis plus -11, plus -10, ... plus -3. Ou je commence par -2 ou 100.
"Les résultats de Bernd doivent être annoncés. Est-ce qu'on peut choisir un numéro de départ pour que le résultat soit 0? - 3 points bleus.
Maria était trop ennuyée par l'addition simple et a cherché une formule et pense qu'elle en a trouvé une. Il commence par un chiffre entier g et utilise une formule pour la somme s. Il y aura 3 points rouges pour trouver la formule et la preuve de fonctionnement. Si on montre qu'une telle formule ne peut pas exister, il y aura aussi 3 points rouges.

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

esp

„¿Estás practicando el cálculo mental?“, le preguntó María a su hermano. „Sí, al momento sumo cada vez diez números consecutivos. Empiezo, por ejemplo, con -12 más -11, más -10 … más -3. O empiezo con -2 o con 100.“Hay que indicar los resultados de Bernd. ¿Se puede elegir un número de empezar para que el resultado sea 0? – 3 puntos azules

A María le pareció demasiado aburrido quedarse sumando los números fácilmente. Por eso, buscó una fórmula y ahora cree que ha conseguido encontrar una fórmula adecuada. Empieza con un número g y aprovecha una fórmula para la suma s. Para el descubrimiento de la fórmula y la prueba del funcionamiento se recibe 3 puntos azules. Igual en caso de que se puede demostrar que una susodicha fórmula no puede existir, se recibe 3 puntos rojos. 

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

en

“Are you practicing mental arithmetic?”, Maria asked her brother. “Yes, at the moment I’m adding ten sequential integers. As an example I start with -12 and add -11, add -10, … add -3. Or I start with -2 or even with 100.”
You have to show Bernd’s results. Is it possible to choose an initial number, so that the result becomes 0? – 3 blue points.
Maria became tired of simply adding numbers. So she went looking for a formula and thinks she has found one. She started with an integer g and uses a formula for sum s. For finding the formula and the proof of existence you will get 3 red points. If you proof, that such a formula doesn’t exist, you will get 3 points too.

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

it

„Stai facendo esercizio di calcolo mentale?”, Maria chiedeva a suo fratello. “Si, sto sommando sempre dieci numeri interi consecutive. Inizio per esempio con “-12” poi “più -11”, “più -10”, ..., “più -3”. O inizio con -2 o anche con 100.”Si indicano i risultati di Bernd. È possibile trovare una un numero d’ avvio col quale risulti il numero zero? – 3 punti bluMaria si annoiava, solo sommando. Per questo ha cercato di trovare invece una formula per questa addizione ed è quasi sicura di averla anche trovata. Inizia con un numero intero g e usa per l’ addizione s una formula. Se si trova una tale formula e si fa la prova che funzioni, vengono dati 3 punti rossi. Anche per la dimostrazione che una tale formula non può esistere vengono dati tre punti rossi.

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Lösung/solution/soluzione/résultat:
Am einfachsten, man fängt mit rot an:
g - sei die Startzahl für die Addiitioan und s die Summe:

s=g+ (g+1)+(g+2)+(g+3)+(g+4)+(g+5)+(g+6)+(g+7)+(g+8)+(g+9) das führt nach dem Auflösen der Klammern auf:
s=10g + 45
Es gibt also eine Formel für das Problem. Einsetzen der blauen Startwerte liefern die gesuchten Zahlen.
Wenn s=0 sein soll ergibt sich g=-4,5. Das ist keine ganze Zahl, damit gezeigt, dass es keine ganze Zahl gibt, die sich als Startwert "eignet" um die Summe 0 zu erreichen.

 


Aufgabe 8

644. Wertungsaufgabe

 

644

„Schau mal. Ich habe ein „rundes“ Sechseck konstruiert.. Hier meine Beschreibung.“, sagte Lisa zu Mike.
1. Einen Kreis c zeichnen - Mittelpunkt M, Radius 8 cm. 2. Dann das rote regelmäßige Sechseck ABCDEF konstruieren. 3. Das gleichseitige Dreieck konstruieren. (IH ist parallel zu CD). 4. die drei roten Kreisteile ergänzen.
Wie groß ist der Abstand von I zur Strecke DE? - 4 blaue Punkte.
Wie viel Prozent der Kreisfläche sind rot? (5 rote Punkte)

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Termin der Abgabe 11.06.2020. Ultimo termine di scadenza per l´invio è il 11.06.1920. Deadline for solution is the 11th. June 2020. Date limite pour la solution 11.06.2020. Soluciones hasta el 11.06.2020. Beadási határidő 2020.06.11.

hun

644

„Nézd, szerkesztettem egy „kerek” hatszöget. Íme, a leírása.” – mondta Lisa Mike-nak.
1. Egy c kört rajzolni, középpontja M, sugara 8 cm.
2. Ezután a piros, szabályos hatszöget ABCDEF-et megszerkeszteni.
3. Az egyenlő oldalú háromszöget berajzolni. (IH párhuzamos CD-vel)
4. A három piros körrészt kiegészíteni.
Mekkora a távolság az I ponttól a DE szakaszhoz? 4 piros pont
Hány százaléka a körfelületnek piros? 5 piros pont

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

fr

644

« Regarde, j'ai construit un hexagone ronde », Lisa a dit à Mike. Voilà ma construction :

  1. Construire un cercle c – centre M, rayon 8 cm.
  2. Puis, construire l'hexagone régulier rouge ABCDEF.
  3. Construire le triangle équilatéral (HI parallèle à CD).
  4. Compléter les trois parts rouges du cercle.

Quelle est la distance de l au segment de droite DE ? (4 points bleus)
Combient pourcent de la surface circulaire sont rouge ? (5 points rouges)

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

esp

644

“Mira. He construido un ‘hexágono redondo’. Aquí está mi descripción”, le dijo Lisa a Mike. Primero: esbozar un círculo c – punto central M, radio 8 cm. Segundo: Construir el hexágono rojo ABCDEF. Tercero: Construir el triángulo equilátero (IH está paralelo a CD). Cuarto: Añadir las partes arqueadas rojas (los fragmentos del círculo). ¿Cuánto mide la distancia desde I hasta el segmento rectilíneo DE? – 4 puntos azules. ¿Cuánto por ciento del área del círculo es rojo? – 5 puntos rojos.

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

en

644

“Look. I constructed a round hexagon. Here is my description.”, Lisa told Mike.
1st Draw a circle c – centre M, radius 8 cm. 2nd Construct the red regular hexagon ABCDEF. 3rd Construct the equilateral triangle. (IH is parallel to CD). 4th Add the three red circle parts.
How big is the distance from I to line segment DE? – 4 blue points.
How much percent of the circle area is red? – 5 red points.

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

it

644

„Guarda! Ho costruito un esagono ‘rotondo’. Ecco la mia descrizione:”, Lisa diceva a Mike. “1. disegnare un cerchio c – centro M, semidiametro 8 cm. 2. Poi costruire l’esagono regolare ABCDEF. 3. Costruire il triangolo equilatero (IH è parallelo a CD). 4. Completare le parti rosse del cerchio.
Quale distanza ha I dal segmento DE? – 4 punti blu.
Quale percentuale del cerchio è dipinto in rosso? (5 punti rossi)

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Lösung/solution/soluzione/résultat:

Eine der schönen Musterlösungen. Von Paulchen, danke. --> pdf <--


Aufgabe 9

645. Wertungsaufgabe

645 k

Der Opa von Maria und Bernd hatte eine alte Postkarte mitgebracht.. Die vielen erkennbaren Dreiecke kann man aus der Karte einfach heraustrennen und zu einer Figur passend zum Satz des Pythagoras zusammenlegen. Das Quadrat – enthält 16 gleiche Dreiecke - ist 8 cm groß. Welche Abmessungen muss das schwarze Dreieck haben, damit die Aufgabe erfüllbar ist? 3 blaue Punkte.

645 rot

Das Dreieck ABC ist rechtwinklig. Es sieht so aus, als seien die Flächen gleicher Farbe gleich groß. Ist das so?
8 rote Punkte (nicht schwierig, aber möglicherweise viel Text)
Anmerkung: Die vier farbigen Teile im linken Kathetenquadrat sehen zwar gleich aus, müssen es aber nicht sein, sprich der gemeinsame Punkt ist nicht zwingend der Mittelpunkt des Quadrates, deswegen auch die Formulierung paarweise gleich. Die erzeugenden Linien sind schon parallel bzw. senkrecht zur Hypotenuse, was man letztlich daraus ableiten kann, da sonst das rote Quadrat nicht als unzerschnittenen Fläche passt. Die Vierecke im Hypotenusenquadrat dürfen umgefärbt werden. Das obige Bild stellt einen Spezialfall dar und stiftet damit Verwirrung, sorry.
Hier ein  hoffentlich besseres:
645 2

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Termin der Abgabe 18.06.2020. Ultimo termine di scadenza per l´invio è il 18.06.1920. Deadline for solution is the 18th. June 2020. Date limite pour la solution 18.06.2020. Soluciones hasta el 18.06.2020. Beadási határidő 2020.06.18.

hun

645 k

Mária és Bernd nagyapja egy régi képeslapot hozott magával. A sok látható háromszöget a képeslapból egyszerűen le lehet választani és Pythagoras tételének megfelelően egy formát összeállítani. A négyzet – ami 16 egyenlő háromszögből áll – 8 cm nagy. Milyen méretű legyen a fekete háromszög, hogy a feladat teljesíthető legyen? 3 kék pont

645 rot

Az ABC háromszög derékszögű. Úgy néz ki, mintha az azonos színű felületek egyenlő nagyságúak lennének. Igaz ez? 8 piros pont (nem nehéz, de lehetséges, hogy sok szöveg)

better:645 2

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

fr

645 k

Le grand-père de Maria et Bernd avait apporté une vieille carte postale. On peut en séparer simplement les beaucoup de triangles connaissables de cette carte et les réunir pour une figure qui est convenable au théorème de Pythagore.
Le carré – contient 16 triangles pareil – a une taille de 8 cm.
Quelle mensuration doit avoir le triangle noir pour que le devoir soit réalisable ? 3 points bleus

645 rot

Le triangle ABC est rectangulaire.
Il paraît que les surfaces de la même couleur ont aussi la même taille. Est-ce que c’est comme ça ? (8 points rouges) (pas difficile, mais probablement beaucoup de texte)

better:645 2

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

esp

645 k

El abuelo de María y Bernd ha traído una vieja postal. Los muchos triángulos reconocibles se pueden apartar de la postal y crear de ellos una figura correspondiente al teorema de Pitágoras. El cuadrado (conteniendo 16 triángulos iguales) mide 8 cm. ¿Qué medidas deben tener los triángulos negros para que sea resoluble la tarea? – 3 puntos azules.

645 rot

El triángulo ABC es rectangular. Parece que las áreas de color similar también tienen el mismo tamaño. ¿Tiene razón esto? 8 puntos rojos (no es complicado, pero tal vez solamente explicable con mucho texto)

better:645 2

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

en

645 k

Maria’s and Bernd’s grandpa brought an old postcard with him. You can easily rip out all visible triangles and put them together creating a figure matching the Pythagoras’ theorem. The square – containing 16 identical triangles – is 8 cm big. Which size has the black triangle to be, that the task is solvable? 3 blue points.

645 rot

The triangle ABC is right-angled. It looks like the areas of the same colour do have the same size. Is this correct? 8 red points (not difficult, but could be a lot of text)

better:645 2

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

it

645 k

Il nonno di Maria e Bernd ha portato una cartolina vecchia. Tutti i triangoli visibili possono essere estratti facilmente e poi essere riuniti per rappresentare il teorema di pitagora. Il quadrato che contiene i 16 triangoli identici ha una
misura dei lati di 8 cm.
Quale misure deve avere il triangolo nero per rendere il compito ( cioè di verificare il teorema, usando la cartolina) solubile? – 3 punti blu

645 rot

Il triangolo ABC è rettangolare. Sembra che superficie dello stesso colore abbiano anche la stessa misura. È vero? – 8 punti rossi (non perché sia tanto difficile, ma perché probabilmente richiede di scrivere un testo molto lungo)

better:645 2

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Lösung/solution/soluzione/résultat:

 Die Musterlösungen beziehen sich auf das bessere Bild, was auch Sinn macht, denn sonst 8 rote Punkte ...
Lösung von Magdalene, pdf, und calvin, pdf, danke


Aufgabe 10

646. Wertungsaufgabe

„Für dein Schachbrett brauchst du aber sehr kleine Schachfiguren.“, sagte Mike. „Das stimmt, aber ich bin mehr an Flächeninhalten interessiert“, erwiderte Bernd.

 646

Die Punkte auf der y-Achse werden mit dem Punkt B verbunden. Wie groß sind Flächeninhalt und Umfang der Dreiecke ABC und IJB? (AC= 1cm) – 5 blaue Punkte.
Ist in den beiden Dreiecken der Anteil der schwarzen Teilflächen gleich groß? 8 rote Punkte.

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Termin der Abgabe 25.06.2020. Ultimo termine di scadenza per l´invio è il 25.06.1920. Deadline for solution is the 25th. June 2020. Date limite pour la solution 25.06.2020. Soluciones hasta el 25.06.2020. Beadási határidő 2020.06.25.

hun

A sakktábládhoz jó kicsi sakkfigurák kellenek. – mondta Mike. Ez igaz, de engem leginkább a felülete érdekel. – válaszolta Bernd.

646

Az y tengelyen lévő pontok a B ponttal vannak összekötve. Mekkora a felülete és a kerülete az ABC és az IJB háromszögnek? (AC= 1cm) – 5 piros pont
Egyforma a fekete részerületek aránya mindkét háromszögben? 8 piros pont

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

fr

« Mais tu as besoin de très petites pièces du jeu d’échecs pour ton échiquier. » dit Mike.
« C’est vrai, mais ce qui m’intéresse plus que ça, sont les mesures des superficies » répond Bernd.

646

On relie les points sur l’axe y avec le point B.
Quelle sont la circonférence et la supertficie des triangles ABC et IJB ? (AC=1cm) 5 points bleus
Est-ce que le part des superficies partielles noires a une taille pareil ? 8 points rouges

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

esp

“Para tu tablero de ajedrez necesitas figuras muy pequeñas”, dijo Mike. “Es verdad, pero me interesan más las áreas”, replicó Bernd. 

646

Los puntos del eje de las ordenadas se combinan con el punto B. ¿De qué tamaño son área y perímetro de los triángulos ABC y IJB? (AC= 1cm) – 5 puntos azules. En estos dos triángulos, ¿la proporción de planos negros es igual? – 8 puntos rojos. 

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

en

 “For your chessboard you need very small chess figures.“, said Mike. “That’s right, but I’m more interested in the areas.“, answered Bernd.

646

The points on the y-axis get connected with point B. How big are area and perimeter of the triangles ABC and IJB? (AC= 1cm) – 5 blue points.
Do both triangles have the same ratio of black subareas? - 8 red points.

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

it

“Per la tua scacchiera ti servono dei pezzi veramente piccoli.”, Mike diceva. “È vero, ma sono più interessato in superfici”, Bernd rispondeva.

 646

I punti sull‘ asse y vengono collegati col punto B. Quale misura hanno la superficie e la circonferenza dei triangoli ABC e IJB? (AC = 1 cm) – 5 punti blu
Dentro i due triangoli è identica la percentuale delle parti neri? – 8 punti rossi.

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Lösung/solution/soluzione/résultat:

Musterlösungen von Birgit --> pdf <-- und Karlludwig --> pdf <-- , danke


Aufgabe 11

647. Wertungsaufgabe

Sommerpause

„Dass es natürliche Zahlen gibt (größer 0), die x² + y² = c² erfüllen, ist ja bekannt. Ebenso aber weiß man auch, dass es keine natürlichen Zahlen gibt (größer 0), so dass x³+y³ = z³ gilt.“, sagte der Opa von Bernd und Maria. „Allerdings lassen sich für a³ + b³ + c³ = d³ und sogar für a³ + b³ + c³ + d³ = e³ positive ganze Zahlen finden, die die Gleichungen erfüllen, probiert es auch“, meinte Opa.
Für das Finden der Zahlen gibt es 5(=2+3) blaue Punkte.
Je vier rote Punkte für das Finden von a, b und c (positive ganze Zahlen) in den folgenden Gleichungen:
a³ + (a+b)³ + (a +2b)³ + … +(a+6b)³ = c³
a³ + (a+b)³ + (a +2b)³ + … +(a+7b)³ = c³
a³ + (a+b)³ + (a +2b)³ + … +(a+9b)³ = c³
(a,b,c,d,e sind in jeder Aufgabe anders. Aufgaben in einem „Aufgabenheft“ aus dem Jahr 1971)

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

hun

Nyári szünet

Ismert, hogy vannak olyan természetes számok (nagyobb, mint 0), amikre igaz: x² + y² = c². Ugyancsak tudjuk, hogy nincs olyan természetes szám (nagyobb, mint 0), amire x³+y³ = z³ érvényes. – mondta Bernd és Mária nagyapja. Mindenesetre keressünk olyan pozitív egész számokat, amikre a a³ + b³ + c³ = d³, sőt a a³ + b³ + c³ + d³ = e³ egyenlet érvényes. – mondta nagyapa.
A számok megtalálása 5(=2+3) kék pontot ér.
Egyenként négy piros pont a, b és c (pozitív egész) számok megtalálása a következő egyenletekben:
a³ + (a+b)³ + (a +2b)³ + … +(a+6b)³ = c³
a³ + (a+b)³ + (a +2b)³ + … +(a+7b)³ = c³
a³ + (a+b)³ + (a +2b)³ + … +(a+9b)³ = c³
(A feladat egy 1971-es munkafüzetből származik.)

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

fr

vacances d'été

«Il est bien connu qu'il existe des nombres naturels (supérieurs à 0) de sorte que x² + y² = c². Mais nous savons également qu'il n'y a pas de nombres naturels (supérieurs à 0), de sorte que x³ + y³ = z³ s'applique », a déclaré le grand-père de Bernd et Maria. "Cependant, pour a³ + b³ + c³ = d³ et même pour a³ + b³ + c³ + d³ = e³, on peut trouver des nombres entiers positifs qui répondent aux équations, essayez-le", dit grand-père.
Il y aura 5 (= 2 + 3) points bleus pour trouver les nombres.
Quatre points rouges chacun pour trouver a, b et c (nombres entiers positifs) dans les équations suivantes:
a³ + (a + b) ³ + (a + 2b) ³ +… + (a + 6b) ³ = c³
a³ + (a + b) ³ + (a + 2b) ³ +… + (a + 7b) ³ = c³
a³ + (a + b) ³ + (a + 2b) ³ +… + (a + 9b) ³ = c³
(Exercice dans un "livre d’exercice" de 1971)

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

esp

„Ya se sabe que existen números naturales (más grandes que 0) para los que se aplique x² + y² = c². También se sabe que no existen números naturales (más grandes que 0) para los que se aplique x³+y³ = z³“, dijo el abuelo de Bernd y María. „No obstante, se pueden encontrar números enteros positivos para los que se aplique a³ + b³ + c³ = d³ o incluso a³ + b³ + c³ + d³ = e³. ¡Pruébadlo!”, dijo el abuelo.
Para el descubrimiento se pueden recibir 5 (=2+3) puntos.
Además, se pueden obtener cada vez 4 puntos rojos para a, b y c (números enteros positivos) en las ecuaciones siguientes:
a³ + (a+b)³ + (a +2b)³ + … +(a+6b)³ = c³
a³ + (a+b)³ + (a +2b)³ + … +(a+7b)³ = c³
a³ + (a+b)³ + (a +2b)³ + … +(a+9b)³ = c³
(se trata de tareas de un cuaderno de deberes del año 1971)

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

en

summer break

“We all know that there are whole numbers (greater 0) which are x² + y² = c². We also know that there is no whole number (greater 0), so that x³+y³ = z³ applies.“, Bernd’s and Maria’s grandpa said. “However, you can find positive integers for a³ + b³ + c³ = d³ and even for a³ + b³ + c³ + d³ = e³, that fulfill the equation. You have to try it“, grandpa told them.
For finding the numbers you will get 5(=2+3) blue points.
For finding a, b and c (positive integers) in the following equations you will get 4 points, for each of them:
a³ + (a+b)³ + (a +2b)³ + … +(a+6b)³ = c³
a³ + (a+b)³ + (a +2b)³ + … +(a+7b)³ = c³
a³ + (a+b)³ + (a +2b)³ + … +(a+9b)³ = c³
(tasks out of an “excercise book“ from the year 1971)

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

it

Pausa d’estate

“È noto che esistono numeri naturali (> 0) con x² + y² = c². Si sa anche che non esistono numeri naturali (> 0) con x³+y³ = z³.”, il nonno di Bernd e Maria diceva.
Si possono però trovare numeri interi positvi che assolvono l’ equazione a³ + b³ + c³ = d³ eppure a³ + b³ + c³ + d³ = e³, cercatelo”, nonno proponeva.Per la trovata di questi numeri vengono dati 5 (= 2+3) punti blu.
Quattro punti rossi vengono dati per ogni trovata di numeri interi positive a, b, c nelle equazioni seguenti:
a³ + (a+b)³ + (a +2b)³ + … +(a+6b)³ = c³
a³ + (a+b)³ + (a +2b)³ + … +(a+7b)³ = c³
a³ + (a+b)³ + (a +2b)³ + … +(a+9b)³ = c³
(Compiti di un “quaderno dei compiti” del 1971)

https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

Lösung/solution/soluzione/résultat:

Eine Musterlösung von Maximilian, danke. --> pdf <--

Für die rote Aufgabe wurde die verscheidenste Programme, so auch z. B. in "C".
Einen Lösungsweg gabe es bei der Vorlage aus dem Jahr 1971 leider nicht, die Lösungen wurden nur als "kuriose" Beispiele benannt.

 Einige Varianten auch in der Erweiterung der Aufgabe von Frank R.

3a) bis 7b: a^3+(a+b)^3+(a+2b)^3+...+(a+7b)^3=c^3

    ich habe eine erste Lösung gefunden:

    (a,b,c)=(28,13,168) und davon Vielfache,

    z.B. (66,26,336) usw.

3b) bis 9b: a^3+(a+b)^3+(a+2b)^3+...+(a+9b)^3=c^3

    ich habe eine erste Lösung gefunden:

    (a,b,c)=(15,37,495) und davon Vielfache,

    z.B. (45,111,1485) usw.

3c) bis 6b:

    a^3+(a+b)^3+(a+2b)^3+...+(a+6b)^3=c^3 

   keine Lösung gefunden, ich möchte aber nicht behaupten,

   das es keine 7 Summanden einer arithmetische Folge mit

   einer Lösung geben muss, es sei, denn es lässt sich z.B.

   mit einer Teilbarkeitsbetrachtung nachweisen...

3d) nicht gefragt war - bis 5b:

    a^3+(a+b)^3+(a+2b)^3+...+(a+5b)^3=c^3

    ich habe eine erste Lösung gefunden:

    (a,b,c)=(31,2,66) und davon Vielfache, z.B. (62,4,132) usw.

 


Aufgabe 12

648. Wertungsaufgabe

648 Dürerbuchstabe
648 farbe

„Ich habe wieder einmal einen Buchstaben konstruiert. Wie du sehen kannst ,ist es ein N, aber eine einfache Variante“, sagte Maria zu ihrem Bruder. Der schaute fragend. „Nun eigentlich ist --> links oben <-- noch ein recht komplizierter Bogen dran.“
Das Quadrat ABCD (hier ist a = 10 cm) wird gezeichnet.. Die erkennbaren Kreise haben den Radius a/10. Der schräge Balken hat eine Breite von a/10. Die schmalen senkrechten Balken haben eine Breite von a/30.
Es gibt 6 blaue Punkte für Umfang und Flächeninhalt des Dreiecks EFG. Für den Flächeninhalt des roten N gibt es 10 rote Punkte.
Termin der Abgabe 17.09.2020. Срок сдачи 17.09.2020. Ultimo termine di scadenza per l´invio è il 17.09.1920. Deadline for solution is the 17th. September 2020. Date limite pour la solution 17.09.2020. Soluciones hasta el 17.09.2020. Beadási határidő 2020.09.17.

rus

648 farbe

648 Буква Дюрера

„Снова я сконструировала букву. Как видишь, это буква N, однако это простой вариант“, сказала Мария своему брату. Тот смотрел -->  вопросительно на неё <- . „Вообще слево наверхо имеется ещё сложная дуга.“ Рисуется квадрат ABCD (здесь a = 10 см). Видимые круги имеют радиус a/10. Наклонная полоса имеет ширину a/10. Узкие вертикальные полосы имеют ширину a/30.
6 синие очки получите за окружность и площадь треугольника EFG.
За площадь красного N получите 10 красных очков.

hun

648 Dürer betű

648 farbe

„Újfent szerkesztettem egy betűt. Amint látod, ez egy N, mégpedig az egyszerű fajta. „– mondta Mária a bátyjának. Az kérdőn nézett. „Hát igazából bal felül még egy rendesen bonyolult ív van.”
Megrajzoljuk az ABCD négyszöget (itt a = 10 cm). A látható körök sugara a/10. A ferde gerenda szélessége a/10. A keskeny függőleges gerenda szélessége a/30.
6 piros pontért számolja ki az EFG háromszög kerületét és területét. A piros N területe 10 piros pontot ér.

fr

648 farbe

"Encore une fois, j'ai construit une lettre. Comme tu peux le voir, c'est un N, mais une variante simple", dit Maria à son frère.
Il avait l'air interrogateur. "En fait, il y a un arc assez compliqué --> en haut à gauche <--."
Le carré ABCD (ici a = 10 cm) est dessiné, les cercles reconnaissables ont le rayon a/10. La barre diagonale mesure a/10 de large. Les barres verticales étroites mesurent a/30.
Il y aura 6 points bleus pour le périmètre et l'aire du triangle EFG. Il y aura 10 points rouges pour la superficie du N.

esp
Letra de Dürer

648 farbe

“Otra vez he construido una letra. Como lo puedes reconocer, se trata de una versión fácil del N”, le dijo María a su hermano. Pero él le miró con cara de preguntas. “Pero verdaderamente --> está un arco bastante <-- complicado arriba a la derecha.”
Se traza el cuadrado ABCD (aquí a = 10 cm). Los círculos reconocibles tienen el radio de a/10. La raya diagonal tiene el ancho de a/10. Las rayas estrechas verticales tienen el ancho de a/30. Para el cálculo de área y perímetro del triángulo EFG se reciben 6 puntos azules. Para el área del N rojo se obtienen 10 puntos rojos.

en

648 farbe

“I again constructed a letter. As you can see it is a „N“, but an easy variety.”
Maria told her brother. He looked at her, puzzled. „Actually there normally is an additional complex bow at --> the upper left <-- side.”
The square ABCD (here a = 10 cm) gets drawn. The visible circles have the radius a/10. The angular beam does have a width of a/10. The slim vertical beam does have a width of a/30.
You get 3 blue points for calculating the perimeter and the area of the triangle EFG. For calculating the area of the red “N” you will get 10 red points.

it

648 Lettera di Dürer

648 farbe

“Ho di nuovo costruito una lettera. Puoi vedere che è una N, ma una variante semplice”, Maria diceva a suo fratello. Questo le guardava interrogativamente. “Del solito in alto a sinistra si --> trova anche un arco abbastanza <-- complicato.”
Il quadrato ABCD (in questo caso a = 10 cm) viene disegnato. I cerchi visibili hanno il semidiametro a/10. La trave diagonale ha una larghezza di a/10. Le travi stretti verticali hanno una larghezza di a/30.
Vengono dati 6 punti blu per la circonferenza e la superficie del triangolo EFG. Per la superficie del N rosso vengono dati 10 punti rossi.

Lösung/solution/soluzione/résultat:

 Musterlösung von Hans, danke. --> pdf <--


Auswertung Serie 54

 Gewinner des Buchpreises: Paulchen Hunter, Helmut Schneider und Frank R., herzlichen Glückwunsch.

(blaue Liste)

Platz Name Ort Summe Aufgabe
  637 638 639 640 641 642 643 644 645 646 647 648
1. Magdalene Chemnitz 56 6 6 3 4 3 8 3 4 3 5 5 6
1. Linus-Valentin Lohs Chemnitz 56 6 6 3 4 3 8 3 4 3 5 5 6
1. Hans Amstetten 56 6 6 3 4 3 8 3 4 3 5 5 6
1. HeLoh Berlin 56 6 6 3 4 3 8 3 4 3 5 5 6
1. Karlludwig Cottbus 56 6 6 3 4 3 8 3 4 3 5 5 6
1. Hirvi Bremerhaven 56 6 6 3 4 3 8 3 4 3 5 5 6
1. Paulchen Hunter Heidelberg 56 6 6 3 4 3 8 3 4 3 5 5 6
1. Birgit Grimmeisen Lahntal 56 6 6 3 4 3 8 3 4 3 5 5 6
1. Calvin Crafty Wallenhorst 56 6 6 3 4 3 8 3 4 3 5 5 6
1. Alexander Wolf Aachen 56 6 6 3 4 3 8 3 4 3 5 5 6
1. Reinhold M. Leipzig 56 6 6 3 4 3 8 3 4 3 5 5 6
2. Albert A. Plauen 53 6 6 3 4 3 8 - 4 3 5 5 6
3. Kurt Schmidt Berlin 52 5 6 3 4 - 8 3 4 3 5 5 6
3. Axel Kästner Chemnitz 52 6 6 3 4 2 8 3 4 3 5 2 6
4. Helmut Schneider Su-Ro 50 6 6 3 4 3 8 3 4 3 5 5 -
4. Maximilian Jena 50 6 6 3 4 3 8 3 4 3 5 5 -
4. Gerhard Palme Schwabmünchen 50 - 6 3 4 3 8 3 4 3 5 5 6
4. Janet A. Chemnitz 50 6 6 - 4 3 8 3 4 - 5 5 6
4. Laura Jane Abai Chemnitz 50 6 6 - 4 3 8 3 4 - 5 5 6
5. Frank R. Leipzig 47 - 6 3 4 - 8 3 4 3 5 5 6
6. Reka W. Siegerland 46 6 6 2 4 3 8 3 4 - 5 5 -
7. Günter S. Hennef 45 6 6 3 4 3 8 3 4 3 5 - -
8. Dana Ingolstadt 43 6 6 - 4 - 8 1 4 3 5 - 6
9. Luca Sindel Schrobenhausen 38 - 6 3 4 3 8 3 4 3 4 - -
10. Paula Rauschenbach Chemnitz 33 6 6 2 - - - 3 - 3 5 2 6
11. Josefin Buttler Chemnitz 30 6 - 1 - - 8 - 3 3 5 4 -
12. Florine Lorenz Chemnitz 29 6 - - 4 - - 2 3 - 5 3 6
13. Maya Melchert Chemnitz 26 6 - 3 - - 8 3 - - - - 6
14. Siegfried Herrmann Greiz 25 - - - 4 3 8 3 - - 5 2 -
14. Othmar Z. Weimar (Lahn) 25 - - - 4 3 - 3 4 - - 5 6
15. Helene Kübeck Chemnitz 22 - 6 - 4 - - 3 - - 3 - 6
15. Tabea Raupach Chemnitz 22 - 6 - 4 - - 3 - - 3 - 6
16. Andree Dammann Muenchen 21 - - - - 3 8 1 4 - 5 - -
17. Marie Reichelt Chemnitz 20 - - 3 4 - - 3 - - 4 - 6
17. Niklas Trommer Chemnitz 20 - - - 3 2 - 1 - 3 5 - 6
17. Yannick Schädlich Chemnitz 20 6 2 - - - - 1 - 3 2 - 6
18. Nagy-Balo Andras Budapest 19 - - 3 4 3 8 1 - - - - -
19. Anabel Pötschke Chemnitz 18 - - 1 4 - - - 3 - 4 - 6
19. Antonio Jobst Chemnitz 18 - - - 4 - - - - 3 5 - 6
20. Antonia Winger Chemnitz 17 6 - - 2 - 8 1 - - - - -
21. Juli-Opa Chemnitz 16 6 6 - 4 - - - - - - - -
21. StefanFinke112 Wittstock/Dosse 16 6 6 - 4 - - - - - - - -
21. Juli Marie Fromm Chemnitz 16 6 6 - 4 - - - - - - - -
22. Moritz Kinder Chemnitz 15 - - - 4 - - 1 - - 4 - 6
22. Jannik Ebermann Chemnitz 15 6 - - - 2 - 1 - - - - 6
23. Ronja Kempe Chemnitz 14 - - 3 4 - - 3 - - 4 - -
24. Dorothea Richter Chemnitz 13 6 - 1 - - - 3 - - - 3 -
25. Chiara Röder Chemnitz 12 - - 1 - - - 1 - - 4 - 6
26. Pascal Graupner Chemnitz 11 - - - - - - - - - 5 - 6
27. Tina Winkler Chemnitz 10 - - 2 - - - 3 - - 5 - -
28. Jakob Walther Chemnitz 9 - - - - 1 - 3 - - 5 - -
29. Adrian Amini Chemnitz 8 - - - 4 1 - 1 - - 2 - -
30. Paula Anita Beneking Chemnitz 7 - - - 4 - - - 3 - - - -
30. Quentin Steinbach Chemnitz 7 5 - - - 1 - 1 - - - - -
31. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
31. Michael Biehl Völklingen 6 6 - - - - - - - - - - -
31. Ina Jahre Zwickau 6 6 - - - - - - - - - - -
31. Johanna Rossbach Chemnitz 6 6 - - - - - - - - - - -
32. Helena Böse Chemnitz 5 5 - - - - - - - - - - -
32. Felix Helmert Chemnitz 5 5 - - - - - - - - - - -
32. Lukas Thieme Chemnitz 5 5 - - - - - - - - - - -
32. Ingmar Rubin Berlin 5 - - - - - - - - - - 5 -
32. Johanna Tilch Chemnitz 5 5 - - - - - - - - - - -
32. Adrian Werner Chemnitz 5 - - - - - - 1 - - 4 - -
33. Oskar Strohbach Chemnitz 4 - - - 4 - - - - - - - -
33. Fritz T. Halle S. 4 2 2 - - - - - - - - - -
34. Doro Papa Chemnitz 3 - - - - - - - - - - 3 -

(rote Liste)

Platz Name Ort Summe Aufgabe
  637 638 639 640 641 642 643 644 645 646 647 648
1. Karlludwig Cottbus 80 6 6 6 3 3 10 3 5 8 8 12 10
1. Magdalene Chemnitz 80 6 6 6 3 3 10 3 5 8 8 12 10
1. Hirvi Bremerhaven 80 6 6 6 3 3 10 3 5 8 8 12 10
1. Reinhold M. Leipzig 80 6 6 6 3 3 10 3 5 8 8 12 10
1. Calvin Crafty Wallenhorst 80 6 6 6 3 3 10 3 5 8 8 12 10
1. HeLoh Berlin 80 6 6 6 3 3 10 3 5 8 8 12 10
1. Paulchen Hunter Heidelberg 80 6 6 6 3 3 10 3 5 8 8 12 10
1. Hans Amstetten 80 6 6 6 3 3 10 3 5 8 8 12 10
2. Alexander Wolf Aachen 79 6 6 6 3 3 10 3 5 7 8 12 10
2. Birgit Grimmeisen Lahntal 79 6 6 6 3 3 10 3 4 8 8 12 10
3. Gerhard Palme Schwabmünchen 74 - 6 6 3 3 10 3 5 8 8 12 10
4. Helmut Schneider Su-Ro 69 6 6 6 3 3 10 3 4 8 8 12 -
4. Maximilian Jena 69 6 6 6 3 3 10 3 4 8 8 12 -
5. Frank R. Leipzig 63 - 6 6 3 - 10 3 5 - 8 12 10
5. Albert A. Plauen 63 6 6 6 3 2 10 - 4 7 1 12 6
6. Axel Kästner Chemnitz 61 6 2 3 3 3 10 3 5 8 8 - 10
7. Kurt Schmidt Berlin 59 5 6 3 3 - 10 3 5 7 7 - 10
8. Günter S. Hennef 58 6 6 6 3 3 10 3 5 8 8 - -
9. Dana Ingolstadt 56 6 4 - 3 - 10 3 5 7 8 - 10
10. Linus-Valentin Lohs Chemnitz 51 6 6 6 3 2 10 3 5 - - - 10
11. Reka W. Siegerland 49 6 6 6 2 3 10 3 5 - 8 - -
12. Othmar Z. Weimar (Lahn) 35 - - - 2 3 - 3 5 - - 12 10
13. Antonia Winger Chemnitz 26 6 - - 2 - 10 3 5 - - - -
13. Andree Dammann Muenchen 26 - - - - 3 10 3 2 - 8 - -
14. Nagy-Balo Andras Budapest 24 - - 6 2 3 10 3 - - - - -
15. Laura Jane Abai Chemnitz 23 6 - - - - 10 3 4 - - - -
15. Janet A. Chemnitz 23 6 - - - - 10 3 4 - - - -
16. Luca Sindel Schrobenhausen 21 - - 3 2 3 10 3 - - - - -
17. Siegfried Herrmann Greiz 19 - - - 3 3 10 3 - - - - -
18. StefanFinke112 Wittstock/Dosse 14 6 6 - 2 - - - - - - - -
19. Ingmar Rubin Berlin 12 - - - - - - - - - - 12 -
20. Paula Rauschenbach Chemnitz 9 6 - - - - - 3 - - - - -
21. Johanna Tilch Chemnitz 6 6 - - - - - - - - - - -
21. Michael Biehl Völklingen 6 6 - - - - - - - - - - -
21. Ina Jahre Zwickau 6 6 - - - - - - - - - - -
21. Felix Helmert Chemnitz 6 6 - - - - - - - - - - -
21. Lukas Thieme Chemnitz 6 6 - - - - - - - - - - -
21. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
21. Johanna Rossbach Chemnitz 6 6 - - - - - - - - - - -
22. Ronja Kempe Chemnitz 4 - - 2 - - - 2 - - - - -
23. Juli Marie Fromm Chemnitz 3 - - - - 3 - - - - - - -
23. Juli-Opa Chemnitz 3 - - - - 3 - - - - - - -
24. Marie Reichelt Chemnitz 2 - - 2 - - - - - - - - -
24. Tina Winkler Chemnitz 2 - - - - - - 2 - - - - -
25. Chiara Röder Chemnitz 1 - - - - 1 - - - - - - -
25. Maya Melchert Chemnitz 1 - - - - - - 1 - - - - -
25. Jakob Walther Chemnitz 1 - - - - 1 - - - - - - -

 

Serie 53

Serie 53

Hier werden die Aufgaben 625 bis 636 veröffentlicht.

Aufgabe 1

625. Wertungsaufgabe

Logikaufgabe

Bernd hat Geburtstag und die Familie (Maria, Vater, Mutter, Opa und Oma) sitzen um den runden Tisch herum. Bernd sitzt direkt zwischen Maria und Opa. Die Oma sitzt rechts neben dem Vater von Bernds Vater und Bernds Mutter sitzt nicht direkt gegenüber vom Opa. Bernd schaut sich die Karten des neuen Spiels an und sagt.:

  1. Es sind mehr als 40 Karten.
  2. Alle Karten haben ein schwarz-weißes Symbol.
  3. Keine Karte hat nur nur ein schwarzes Symbol.
  4. Es sind weniger als 60 Karten.
  5. Es sind mehr als 50 Karten.

Genau eine der Aussagen ist wahr, aber welche? 4 rote Punkte.

Als das geklärt ist , notiert Bernd für seinen Freund Mike noch das:

  1. Bernds Mutter sitzt neben dem Opa.
  2. Maria sitzt neben ihrer Mutter.
  3. Bernds Vater sitzt neben seinem Vater.
  4. Maria sitzt neben dem Opa.
  5. Opa sitzt neben Oma.

Mike überlegt, welche der 5 Aussagen wirklich als einzige zutrifft – 4 blaue Punkte

Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern.  © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

625 mainzel

Termin der Abgabe 19.12.2019. Ultimo termine di scadenza per l´invio è il 19.12.2019. Deadline for solution is the 19th. December 2019. Date limite pour la solution 19.12.2019. Soluciones hasta el 19.12.2019. Beadási határidő 2019.12..19.

hun

Berndnek szülinapja van és a családdal (Maria, Apa, Anya, Nagypapa és Nagymama) a kerek asztalnál ülnek. Bernd közvetlenül Maria és Nagypapa mellett ül. A nagymama jobbra ül Bernd apukájának az apjától és Bernd anyja nem direkt szemben ül a nagypapával. Bernd megnézi az új játék kártyáit és azt mondja:

  1. Ez több mint 40 kártya.
  2. Minden kártyán van egy fekete-fehér jelzés.
  3. Egy kártyának sincs csak egy fekete jele.
  4. Kevesebb, mint 60 kártya van.
  5. Több mint 50 kártya van.

Csak 1 állítás igaz. Melyik ez? 4 piros pont

  1. Bernd anyja a nagypapa mellett ül.
  2. Maria az anyja mellett ül.
  3. Bernd apja az ő apja mellett ül.
  4. Mária a nagymama mellett ül.
  5. Nagypapa ül a nagymama mellett.

Mike gondolkodik, hogy az 5 állítás közül melyik az egyetlen, ami igaz. 4 kék pont

A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket.  ©HRGauern[at]@t-online.de

625 mainzel

fr

Exercice de logique
Bernd fête son anniversaire et la famille (Maria, père, mère, grand-père et grand-mère) est assise autour de la table ronde. Bernd est assis directement entre Maria et grand-père. La grand-mère est assise juste à côté du père du père de Bernd et la mère de Bernd n'est pas assise directement en face de grand-père. Bernd regarde les cartes du nouveau jeu et dit:
1. Il y a plus de 40 cartes.
2. Toutes les cartes ont un symbole noir et blanc.
3. Aucune carte ne comporte qu'un seul symbole noir.
4. Il y a moins de 60 cartes.
5. Il y a plus de 50 cartes.
Exactement l'une des affirmations est vraie, mais lesquelles? 4 points rouges.
Dès que cela a été clarifié, Bernd note pour son ami Mike:
1. La mère de Bernd est assise à côté de son grand-père.
2. Mary est assise à côté de sa mère.
3. Le père de Bernd est assis à côté de son père.
4. Maria est assise à côté du grand-père.
5. Grand-père est assis à côté de grand-mère.
Mike considère laquelle des 5 déclarations est vraiment la seule valide - 4 points bleus

La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

625 mainzel

esp

Es el cumpleaños de Bernd y la familia (Maria, el padre, la madre, el abuelo y la abuela) está sentado alrededor de la mesa. Bernd está precisamente entre Maria y el abuelo. La abuela está a la derecha del padre del padre de Bernd (≈abuelo) y la madre de Bernd no está directamente frente al abuelo. Bernd mira los naipes del juego nuevo y dice:
1. Son más que 40 naipes.
2. Todos los naipes tienen un símbolo en blanco y negro.
3. No hay ningún naipe con un símbolo en solo negro.
4. Son menos que 60 naipes.
5. Son más que 50 naipes.
Solamente una declaración es correcto, pero ¿cuál? - 4 puntos rojos.
Aclarado esto, Bernd apunta otra cosa más para su amigo Mike:
1. La madre de Bernd está al lado del abuelo.
2. María está al lado de su madre.
3. El padre de Bernd está al lado de su padre.
4. María está al lado del abuelo.
5. El abuelo está al lado de la abuela.
Mike reflexiona, cuál de los 5 declaraciones es la única correcta - 4 puntos azules.
Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras.  ©HRGauern[at]@t-online.de

625 mainzel

en

625 logical task

It is Bernd’s birthday and his family (Maria, father, mother, grandma and grandpa) are sitting around a circular table. Bernd is sitting directly between Maria and grandpa. His grandma is sitting right next to the father of Bernd’s father. Bernd’s mother is not sitting directly opposite of grandpa. Bernd looks at the cards of the new game and says:

  1. There are more than 40 cards.
  2. All cards have a black-white symbol.
  3. No card just has a black symbol.
  4. There are less than 60 cards.
  5. There are more than 50 cards.

Exactly one of the propositions is true, but which one? – 4 red points.

As this task is settled, Bernd takes the following notes for his friend Mike:

  1. Bernd’s mother is sitting next to grandpa.
  2. Maria is sitting next to her mother.
  3. Bernd’s father is sitting next to his father.
  4. Maria is sitting next to grandpa.
  5. Grandpa is sitting next to grandma.

Mike considers which of the 5 propositions is the only true – 4 blue points.

Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

625 mainzel

it

Compito di logica
Al compleanno di Bernd tutti i membri della famiglia (Maria, Padre, Madre, Nonno, Nonna) si sono seduti intorno alla tavola rotonda. Bernd siede tra Maria e Nonno. La Nonna siede a destra del padre del Padre (questa ripetizione non é uno sbaglio) di Bernd e la Madre di Bernd non siede di fronte a Nonno. Bernd studia le carte del gioco nuovo e dice:

  1. Sono più di 40 carte.
  2. Tutte le carte hanno un simbolo bianco-nero.
  3. Nessuna delle carte porta solo un simbolo nero.
  4. Sono meno di 60 carte.
  5. Sono più di 50 carte.

 Solo una di queste dichiarazioni è vera, ma quale? 4 punti rossi
Quando questo era chiarito, Bernd notava per suo amico Mike il seguente:

  1. La Madre di Bernd siede accanto a Nonno.
  2. Maria siede accanto a sua Madre.
  3. Il Padre di Bernd siede accanto a suo padre.
  4. Maria siede accanto a Nonno.
  5. Nonno siede accanto a Nonna. 

 Mike pensa su quale di queste dichiarazioni sia l’ unica vera. - 4 punti blu

La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

625 mainzel

Lösung/solution/soluzione/résultat:

Musterlösung von Günter S., danke --> pdf <--


Aufgabe 2

626. Wertungsaufgabe

„Maria, du hast ja schon einige Buchstaben nach den Anleitungen von Dürer konstruiert. Die haben mir sehr gefallen. Deshalb habe ich eine andere Konstruktion von Albrecht Dürer mitgebracht – seine Konstruktion eines Fünfecks.“, sagte der Opa von Maria und Bernd.

626
Strecke AB zeichnen (a = 4cm)
Jetzt die blauen Kreise, die schneiden einander in den Punkten F und G. Damit entsteht die Gerade g.
Jetzt den grünen Kreis (Mittelpunkt F und r = a) zeichnen. Schnittpunkte des grünen Kreises mit den blauen Kreisen sind I bzw. J. Der obere Schnittpunkt des grünen Kreises und g heißt H. Nun werden die Geraden i – JH und f – IH gezeichnet.. Es entstehen die Punkte C und E, diese werden zu Mittelpunkten der roten Kreise (r=a) und man erhält noch Punkt D. Das Fünfeck ABCDE sieht regelmäßig aus. Wie groß wären Flächeninhalt und Umfang des Fünfecks, wenn es regelmäßig mit a = 4 cm wäre. 4 blaue Punkte
Ist ein so konstruiertes Fünfeck wirklich regelmäßig? Der Nachweis oder die Widerlegung der Regelmäßigkeit des Fünfeck nach Dürer bringt 6 rote Punkte. Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

626 nusskn

Termin der Abgabe 09.01.2020. Ultimo termine di scadenza per l´invio è il 09.01.1920. Deadline for solution is the 9th. January 2019. Date limite pour la solution 09.01.2020. Soluciones hasta el 09.01.2020. Beadási határidő 2020.01.09.

hun

Mária, te már szerkesztettél pár betűt Dürer leírása alapján. Ezek nagyon tetszettek neked. Ezért hoztam egy másik szerkesztést Dürertől, az ötszöget. - mondta Mária és Bernd nagyapja.

626

Meghúzzuk az AB szakaszt, ami 4 cm. Most a kék körök következnek, melyek az F és G pontban metszik egymást. Ezzel létrejön a G egyenes. Most a zöld kört (középpontja F, r = a) szerkesztjük meg. A zöld kör metszéspontja a kék körükkel az I és J. A zöld kör felső metszéspontját és a g-t H-nak hívjuk. Most már csak az I szakasz – JH és IH – megszerkesztése van hátra. Ezzel kialakul a C és E pont, ezek lesznek a piros körök (r=a) középpontjai és megkapjuk a D pontot. Az ABCDE ötszög szabályosnak tűnik. Mekkora a kerülete és a felülete az ötszögnek, amennyiben a = 4 cm? 4 kék pont
Egy ilyen módon szerkesztett ötszög tényleg szabályos? A Dürer ötszög szabályosságának bizonyítása vagy megcáfolása 6 piros pontot ér.
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

626 nusskn

fr

"Maria, tu as déjà construit quelques lettres selon les instructions de Dürer. Je les aimais beaucoup. C'est pourquoi j'ai apporté une autre construction d'Albrecht Dürer - sa construction d'un pentagone », a déclaré le grand-père de Maria et Bernd; distance AB (a = 4cm)

626
Maintenant, les cercles bleus se coupent aux points F et G. Cela crée la droite g.
Dessinez maintenant le cercle vert (point central F et r = a).
Les intersections du cercle vert avec les cercles bleus sont I et J. L'intersection supérieure du cercle vert et g est H.
Maintenant, les lignes droites i - JH et f - IH sont tracées. Les points C et E sont créés, qui deviennent le centre des cercles rouges (r = a) et on obtient le point D.
Le pentagone ABCDE semble régulier. Quelle serait la superficie et la circonférence du pentagone s'il était régulier avec a = 4 cm. 4 points bleus
Un pentagone ainsi construit est-il vraiment régulier? La preuve ou la réfutation de la régularité du pentagone selon Dürer apporte 6 points rouges.

La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

626 nusskn

sp

„Maria, ya has creado varias letras bajo la dirección de Dürer. Me han gustado mucho. Por eso traje otra construcción de Albrecht Dürer: su construcción de un pentágono“, dijo el abuelo de Maria y Bernd. Trazar el segmento rectilíneo AB (a= 4 cm).

626

Después trazar los círculos azules que se cruzan uno al orto en los puntos F y G. Así resulta la línea recta g. Ahora, trazar el círculo verde  (punto central F y r=a). Los puntos de intersección del círculo verde con el círculo azul son I o sea J. La intersección del círculo verde y g se llama H. Ahora se traza las rectas i-JH y f - IH. Resultan los puntos C y E que se hacen puntos centrales de los círculos rojos (r=a) y luego se obtiene el punto D. El pentágono ABCDE se ve regular. ¿De qué tamaño serían área y perímetro, si regularmente siempre tiene a= 4cm? 4 puntos azules

De verdad, ¿un pentágono construida de tal manera es regular? La prueba o refutación de la regularidad del pentágono según Dürer trae 6 puntos rojos.

Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

626 nusskn

en

”Maria, you’ve already designed some letters after Albrecht Dürer’s instruction. I liked those very much. So I brought another design of Albrecht Dürer – his design of a pentagon, grandpa told to Maria and Bernd.”

626


Draw line segment AB (a = 4cm).
Now the blue circles, they intersect in points F and G.
So line G is formed.
Now draw the green circle (center F and r = a). The points of intersection between the green and the blue circle are I respectively J. The upper point of the intersection of the green circle and g is H. Now the lines i – JH and f – IH are drawn. The points C and E are formed. They become the center of the red circle (r = a) and you get another point D. The pentagon ABCDE looks regular. How big would area and perimeter be, if the pentagon would be regular with a = 4cm. – 4 blue points
Is such a designed pentagon really regular? The proof or disproof of the regularity of Dürer’s pentagon gets you 6 blue points.
Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

626 nusskn

it

„Maria, so che hai già costruito un paio di lettere secondo le istruzioni di Dürer. Mi sono piaciuti tantissimo. Ecco perché ti ho portato un’ altra costruzione di Dürer – la sua costruzione di un pentagono.”, diceva il nonno di Maria e Bernd.

626

Disegnare il segmento AB (a = 4 cm), poi I cerchi blu che si intersecano nei punti F e G; così risulta la retta g. Adesso disegnare il cerchio verde (centro F; r = a). I punti di intersezione di esso coi cerchi blu sono I e J. Il punto di intersezione del cerchio verde con g si chiama H. Adesso si disegnano le rette i – JH e f – IJ. Risultano quindi I punti C e E, che diventano i centri dei cerchi rossi (r = a) dei quali risulta il punto D.
Il pentagono ABCDE sembra essere regolare. Quale sarebbero la superficie e la circonferenza di questo pentagono in questo caso (con a = 4 cm)? 4 punti blu
È vero che un pentagono, costruito in questo modo, sia veramente regolare? Per la verificazione o falsificazione della regolarità di un pentagono secondo la costruzione di Dürer vengono dati 6 punti rossi.
La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

626 nusskn

Lösung/solution/soluzione/résultat:
Der Rekord bei den Schultekacheln liegt derzeit bei 17 Punkten, erzielt durch Reinhold M., Glückwunsch. 16 Punkte erreichte Magdalene (Glückwunsch auch hier), die damit den alten Rekord einstellte.
Musterlösung von Maximilian, der alle Winkel (wie andere auch) im Dürerfünfeck berechnet hat, danke. --> pdf <--


Aufgabe 3

627. Wertungsaufgabe

627
„Du hast aber auch eine schöne Konstruktion angefertigt“, sagte Opa zu Maria. „Danke für das Kompliment.. Ich habe mit dem gleichseitigen Dreieck ABC (a=6 cm) begonnen. Die Punkte A, B, C sind Mittelpunkte der drei äußeren Kreisbögen. Es ist also ein „Bogendreieck“ entstanden. Dann habe ich noch die drei gleichgroßen Kreise konstruiert, die berühren sich und jeweils einen äußeren Kreisbogen.“
Wie groß sind Umfang und Flächeninhalt des „Bogendreiecks“? 5 blaue Punkte. Wie groß ist der Radius eines der inneren Kreise? - 5 rote Punkte
Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

627 saegen

Termin der Abgabe 16.01.2020. Ultimo termine di scadenza per l´invio è il 16.01.1920. Deadline for solution is the 16th. January 2019. Date limite pour la solution 16.01.2020. Soluciones hasta el 16.01.2020. Beadási határidő 2020.01.16.

hun

627

„Megint nagyon szép, amit szerkesztettél” – mondta Nagyapa Máriának. „Köszönöm a dicséretet. Az egyenlő szárú háromszöggel ABC (a=6 cm) kezdtem. Az A,B, C pont a három külső kör középpontja. Így egy „íves” háromszög jön létre. Aztán szerkesztettem meg a három egyenlő nagyságú kört, amik érintik egymást és a nagy kört is. Mekkora a területe és a kerülete az „íves” háromszögnek? 5 kék pont
Mekkora az átmérője a belső köröknek? 5 piros pont
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

627 saegen

fr

627

"Mais tu as fait une belle construction", a déclaré grand-père à Maria. "Merci pour le compliment. J'ai commencé avec le triangle équilatéral ABC (a = 6 cm). Les points A, B, C sont les centres des trois arcs extérieurs. Il y avait donc un "triangle en arc". J'ai ensuite construit les trois cercles de la même taille. Ils se touchent et ont chacun un arc circulaire extérieur.
Quelle sont la circonférence et la superficie du "triangle en arc"? 5 points bleus.
Quel est le rayon de l'un des cercles intérieurs? - 5 points rouges
La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

627 saegen

sp

627

„Has creado una bella construcción“, le dice el abuelo a Maria. „Gracias por el cumplido. He empezado con el triángulo equilátero ABC (a= 6cm). Los puntos A, B y C son puntos centrales de los tres arcos circulares externos. Entonces se ha producido un „triángulo de arcos“. Luego he trazado los tres círculos del mismo tamaño que se tocan mutuamente y que tocan cada uno a uno de los arcos circulares externos.“ ¿Cuánto miden perímetro y área del „triángulo de círculos“? - 5 puntos azules. ¿De qué tamaño está el radio de uno de los círculos pequeños internos? - 5 puntos rojos.

Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

627 saegen

en

627

„You have made a nice construction“, grandpa told Maria. „Thanks for the compliment. I started with the equilateral triangle ABC (a=6 cm). The points A, B, C are the three outer arc’s centers. Therefore a so called “arc triangle” has been formed. Then I designed the three equal circles. They each touch an outer arc.
How big are area and perimeter of the “arc triangle”? - 5 blue points How big is the radius of one of the inner circles? – 5 red points
Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

627 saegen

it

627

“Che bella costruzione hai fatto!”, il nonno diceva a Maria. “Grazie del complimento. Ho iniziato con un triangolo equilatero ABC (a = 6 cm). I punti A, B, C sono I centri dei tre archi circolari esterni. Quindi è derivato un “triangolo curvato”. Poi ho costruito I tre cerchi che hanno tutti la stessa misura e che toccano sia se stessi sia gli archi circolari esterni.
Quale misura hanno la superficie e la circonferenza del “triangolo curvato”? 5 punti blu
Qual’è la misura del semidiametro di uno dei cerchi interni? – 5 punti rossi
La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

627 saegen

Lösung/solution/soluzione/résultat:
Musterlösung a la (Des-) carte(s) von Magdalene, danke. --> pdf <--


Aufgabe 4

628. Wertungsaufgabe

628„Das Fünfeck, welches Opa mit brachte hat dich wohl zu deiner Konstruktion angeregt?“; fragte Bernd seine Schwester. „Das stimmt.“ Begonnen wird mit dem dunkelblauen Fünfeck – regelmäßig wie alle sichtbaren Fünfecke. Anschließend die „rötlichen“ Fünfecke. Die Strecke AB wird verlängert, so dass das Dreieck OPM gezeichnet werden kann. Nun das grüne Fünfeck konstruieren. Wie das hellblaue Fünfeck entsteht, kann man der Zeichnung entnehmen.
Wie groß sind die Innenwinkel des Dreiecks OPM – nicht messen, ausrechnen? 4 blaue Punkte. Wer möchte, kann alle farbigen Teile des Bildes ausschneiden und wenn man es schafft, lässt sich, unter weglassen des dunkelblauen Fünfecks, wieder ein Fünfeck legen.
Ein „Foto“ als Beweis bringt noch einmal 2 blaue Punkte.
Wie groß ist der Flächeninhalt aller Teilflächen des großen hellblauen Fünfecks, die nicht von anderen Fünfecken verdeckt werden, wenn der Flächeninhalt des dunkelblauen Fünfecks 20 cm² beträgt? 10 rote Punkte.
Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

628 stocknaegel

Termin der Abgabe 23.01.2020. Ultimo termine di scadenza per l´invio è il 23.01.1920. Deadline for solution is the 23th. January 2019. Date limite pour la solution 23.01.2020. Soluciones hasta el 23.01.2020. Beadási határidő 2020.01.23

hun

628

„Az az ötszög, amit nagyapa hozott, ösztönzött téged a szerkesztésedhez?” – kérdezte Bernd a nővérét. „Így van.” A sötétkék ötszöggel kezdtem, egyenlő oldalú, mint minden itt látható ötszög. A „vöröses” ötszögekkel folytattam. Az AB szakaszt meghosszabbítottam, hogy az OPM háromszög kirajzolódjon. Már csak a zöld ötszöget kell megszerkeszteni. Azt hogy a világoskék ötszög hogyan jön létre, láthatjuk az ábrán. Mekkorák a belső szögei az OPM háromszögnek, nem mérve, kiszámolva? 4 kék pont
Aki szeretné, kivághatja az összes színes részét az ábrának, és ha tudja, a sötétkék ötszög elhagyásával ismét egy ötszöget alkothat. Egy bizonyító fotó még 2 kék pontot ér.
Mekkora a felülete nagy világoskék ötszög összes olyan részfelületének, amelyek más ötszögtől nem fedettek, ha a sötétkék ötszög felülete 20 cm²? 10 piros pont
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

628 stocknaegel

fr

628

"Le pentagone que grand-père a apporté t'as probablement inspiré pour faire cette construction?", Bernd a demandé à sa sœur. "C'est vrai." Cela commence par le pentagone bleu foncé - régulière comme tous les pentagones visibles. Puis les pentagones "rougeâtres". La distance AB est allongée pour que le triangle OPM puisse être tracé, puis le pentagone vert. La création du pentagone bleu clair peut être vu dans le dessin.
Quelle est la taille des angles intérieurs du triangle OPM - ne pas mesurer, mais calculer? 4 points bleus.
Qui veut, peut découper toutes les parties colorées de l'image et les placer d'une telle manière de construire à nouveau un pentagone, mais sans l'utilisation du pentagone bleu foncé.
Une "photo" comme preuve apporte 2 points bleus supplémentaires.
Quelle est l'aire de toutes les zones partielles du grand pentagone bleu clair qui ne sont pas couvertes par d'autres pentagones si l'aire du pentagone bleu foncé est de 20 cm²? 10 points rouges.
La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

628 stocknaegel

sp

628

„¿El pentágono del abuelo te ha inspirado a crear esta construcción?“, le preguntó Bernd a su hermana. „Es verdad…“
Se empieza con el pentágono en azul oscuro - regular como todos los pentágonos visibles. Posteriormente los pentágonos rojizos. Se prolonga el segmento rectilíneo, para que se pueda construir el triángulo OPM. Ahora, trazar el pentágono verde. En el dibujo se puede ver como se construye el pentágono azul claro. ¿De qué tamaño son los ángulos internos del triángulo OPM - no medir, sino calcular? - 4 puntos azules. Si tiene ganas, se puede recortar todas las partes coloridas del imagen y poner otro pentágono sin el pentágono de azul oscuro. Una foto como prueba trae  2 puntos azules más.
¿Cuánto mide el área de todas las partes del gran pentágono azul claro que no están cubiertos de otros pentágonos, si el área del pentágono azul oscuro está 20 cm²? 10 puntos rojos.
Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

628 stocknaegel

en

628

“Did the pentagon grandpa brought to you earlier inspire you to do a new construction? “; Bernd asked his sister. “Yes, that’s true.“ We start with a dark blue pentagon – regular as all visible pentagons. Afterwards we add the ‘reddish‘ pentagon. The line segment AB gets extended so the triangle OPM can be drawn. Now we construct the green pentagon. To find out about constructing the bright blue pentagon just look at the sketch on the right side.
How big are the interior angles of the triangle OPM – not measured but calculated? - 4 blue points. You can cut out all coloured parts of the picture. If that is possible, you can lay another pentagon, without using the dark blue pentagon. A photo as proof gets you another 2 blue points.
How big is the area of all subareas of the bright blue pentagon, which is not covered by other pentagons, if the area of the dark blue pentagon is 20cm²? – 10 red points.
Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

628 stocknaegel

it

628

“Il pentagono che ti ha portato il nonno forse ti ha incitato di fare la tua costruzione?”, Bernd chiedeva sua sorella. “È vero.”
Si inizia col pentagono blu scuro – regolare come tutti i pentagoni visibili. Poi i pentagoni rossastri. Il segmento AB viene allungato per poter disegnare il triangolo OPM. Adesso si costruisce il pentagono verde chiaro. Nel disegno si vede come per ultimo emerge il pentagono celeste.
Quale misura hanno gli angoli interni del triangolo OPM – calcolare, non misurare? 4 punti blu
Chi vuole, può ritagliare tutti i pezzi colorati del disegno per unirli tutti (tranne il pentagono blu scuro) nella forma di un altro pentagon. Una “foto” come prova porta altri due punti blu.
Qual’è la superficie di tutte le parti del pentagono celeste che non siano coperti di altri pentagoni nel caso che la superficie del pentagono blu scuro sia 20 cm2? 10 punti rossi
La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

628 stocknaegel

Lösung/solution/soluzione/résultat:
Es sind mehr als 10 Varianten für das Fünfeckpuzzle eingesandt worden, danke.
Eine Musterlösung, von Calvin, danke. --> pdf <--


Aufgabe 5

629. Wertungsaufgabe

Mike hat Millimeterpapier vor sich liegen und ist am Rechnen. „Was wird das“, fragt Lisa. „Von unserem Lehrer habe ich den Auftrag bekommen, alle Punkte in das Koordinatensystem einzutragen, so dass x² + y² = 4 gilt..“ „Ach so, du wirst sehen, die verblüffende Lösung ist ganz einfach.“
Für drei blaue Punkte sollte eigentlich jeder auf die Lösung kommen, oder?
Die Figur der blauen Aufgabe wird durch das Bild der Funktion y=f(x)=1/x (x>0) in zwei Punkten A und B geschnitten.Die Punkte A und B werden mit dem Punkt C (0; 0) zu einem Dreieck ABC. Wie groß sind Umfang und Flächeninhalt des Dreiecks ABC – 6 rote Punkte.
Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

629

Termin der Abgabe 30.01.2020. Ultimo termine di scadenza per l´invio è il 30.01.1920. Deadline for solution is the 30th. January 2019. Date limite pour la solution 30.01.2020. Soluciones hasta el 30.01.2020. Beadási határidő 2020.01.30.

hun

Mike előtt egy milliméterpapír hever, és éppen számol. „Ez mi lesz” – kérdezi Lisa. ”A tanárunktól kaptam azt a feladatot, hogy minden pontot ábrázoljak a koordináta rendszerben, amelyikre érvényes, hogy x² + y² = 4. „Vagy úgy, majd látod, hogy az bonyolult megoldás egészen egyszerű.”
3 kék pontért mindenkinek rá kellene jönni a megoldásra, nem?
A kék feladat ábráját a y=f(x)=1/x (x>;0) függvény A és B pontban metszi. Az A és B pont a C ponttal (0, 0) háromszöget alkot. Mekkora a területe és a kerülete az ABC háromszögnek? 6 piros pont

A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

629

fr

Mike a du papier millimétré devant lui et calcule. "Qu'est-ce que ce sera", demande Lisa. "Notre professeur m'a donné la tâche de saisir tous les points du système de coordonnées pour que x² + y² = 4." "Oh, tu verras, la solution est étonnante est très simple."
Tout le monde devrait trouver la solution pour trois points bleus, non?
La figure du problème bleu est coupée par l'image de la fonction y = f (x) = 1 / x (x> 0) en deux points A et B. Les points A et B sont coupés par le point C (0; 0) pour former un triangle ABC. Quelle est la circonférence et l'aire du triangle ABC - 6 points rouges.
La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

629

sp

Mike tiene su papel milimetrado delante y está calculando. „Qué será eso?“, le pregunta Lisa. „Del profesor tenemos la tarea de marcar todos los puntos en el sistema de coordenadas para que se aplique x² + y² = 4.“ „Ah ya, vas a ver que la solución sorprendentemente es muy fácil.“ - 3 puntos azules.
La figura de la tarea azul se cruza con el imagen de la función y=f(x)=1/x (x>0) en dos puntos A y B. Aquellos puntos (A y B) se hacen un triángulo ABC juntos con el punto C (0;0). ¿Cuánto miden área y perímetro del triángulo ABC? - 6 puntos rojos.
Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

629

en

Mike has got coordinate paper and is calculating. “What is that going to be?”, Lisa asked. “Our teacher gave me the task to write all points into the coordinate system, so that x² + y² = 4 is true.” “Oh, you will see that the astonishing solution is quite simple.”
For 3 blue points everybody should be able to find out the correct solution, don’t you think so?
The figure of the blue task gets intersected in two points A and B, through the picture of the function y=f(x)=1/x (x>0). The points A and B together with point C (0; 0) become a triangle ABC. How big are area and perimeter of the triangle ABC? – 6 red points.

Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

629

it

Mike sta calcolando, usando carta millimetrata. “Cosa stai facendo?”, chiede Lisa. “Il nostro insegnante mi ha dato l’ordine di inserire in un sistema di riferimento tutti i punti (x ; y) per i quali sia x2 + y2 = 4.” - “Ah! Vedrai che la soluzione sorprendente è molto facile.”
Per tre punti blu, ognuno dovrebbe trovare la soluzione, vero?
La figura del compito blu e il grafo della funzione y = f(x) = 1/x (x>0) si intersecano nei punti A e B. Questi formano col punto C (0 ; 0) un triangolo ABC.
Quale sono la superficie e la circonferenza del triangolo ABC? – 6 punti rossi
La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

629

Lösung/solution/soluzione/résultat:

Musterlösung von Magdalene, danke. --> pdf <--


Aufgabe 6

630. Wertungsaufgabe

„Schau mal dieses Kleeblatt an“, sagte Bernd zu seiner Schwester. „Das ist cool.“

630

Das vierblättrige Kleeblatt ist durch die Untersuchung von x4 + 4xy + y4 = 0 und x4 - 4xy + y4 = 0 entstanden.
Welchen Punkt haben alle vier Blätter gemeinsam? 2 blaue Punkte für eine begründete Entscheidung. Welche der beiden Gleichungen führt auf das rechte obere Blatt? Noch mal zwei blaue Punkte
Ich bin gespannt, ob sich jemand die 8 roten Punkte für den Flächeninhalt des Kleeblatts holt.
Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

630 emo

Termin der Abgabe 06.02.2020. Ultimo termine di scadenza per l´invio è il 06.02.1920. Deadline for solution is the 6th. February 2019. Date limite pour la solution 06.02.2020. Soluciones hasta el 06.02.2020. Beadási határidő 2020.02.06.

hun

„Nézd csak ezt a lóherét!” – mondta Bernd a nővérének. „Ez menő.”

630

A négylevelű lóhere a x4 + 4xy + y4 = 0 és x4 - 4xy+ y4 = 0 megvizsgálásából jött létre. Mely pontjai közösek mind a négy levélnek? 2 kék pont egy megmagyarázott döntésért. A két egyenlet melyike vezet a jobb felső levélhez? Még egyszer 2 kék pont
Kíváncsi lennék, hogy kap-e valaki 8 piros pontot a lóhere felületének kiszámolásáért.
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

630 emo

fr

"Jettes un œil à ce trèfle", a déclaré Bernd à sa sœur. "C'est cool."

630

Le trèfle à quatre feuilles a été créé en examinant x4 + 4xy + y4 = 0 et x4 - 4xy + y4 = 0.
Quel point les quatre feuilles ont-elles en commun? 2 points bleus pour une décision fondée. Laquelle des deux équations mène à la feuille en haut à droite? Deux autres points bleus
Je suis curieux de voir si quelqu'un obtient les 8 points rouges pour calculer la surface de la feuille de trèfle ..

La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

630 emo

esp

„Mira esta hoja de trébol“, le dijo Bernd a su hermana. „Que chulo.“

630

Se ha producido por la investigación de x4 + 4xy + y4 = 0 y  x4 - 4xy + y4 = 0. ¿Cuál punto tienen todas las hojas en común? - 2 puntos azules para la decisión fundada.
¿Cuál de las ecuaciones lleva a la parte a la derecha por arriba? - 2 puntos azules más.
Estoy nervioso de ver si alguien se atreve a calcular el área de toda la hoja completa - 8 puntos rojos.
Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

630 emo

en

„Look at the cloverleaf“, said Bernd to his sister. „That is cool.“

630

The four-leaf clover has been created through the research of x4 + 4xy + y4 = 0 and x4 - 4xy + y4 = 0.
Which point do all three leafes have together? - 2 blue points for a solution with reason Which of the both equations leads to the right upper leaf? - 2 blue points again
I’m excited already if someone will be able to get the 8 red points for calculating the area of the cloverleaf.

Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

630 emo

it

“Guarda questo quadrifoglio”, Bernd diceva a sua sorella. “È cool!”

630

Il quadrifoglio risultava del’ analisi degli equazioni x4 + 4xy + y4 = 0 e x4 - 4xy + y4 = 0
Quale punto hanno tutti i quattro fogli in commune? 2 punti blu per una decisione fondata. Quale delle equazioni forma il foglio destro in alto? Altri due punti blu.
Sono molto curioso, se qualchuno si becchi gli 8 punti rossi per la superficie del quadrifoglio.
La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

630 emo

Lösung/solution/soluzione/résultat:
rot war schon ein Hammer, aber schön. Empfehlung auch mal z(x,y)=x4+4xy+y4 und z(x,y)=x4-4xy+y4in Geogebra (oder so) darstellen, die Funktionsbilder sehen einfach schön aus.
Beispiellösungen von G Palme, pdf und Maximilian, pdf. Danke allen Teilnehmern.


Aufgabe 7

631. Wertungsaufgabe

Apfelsinenaufgabe

631

Wieder sind Schüler des Chemnitzer Schulmodells in Paterno (Sizilien) zur Apfelsinenernte unterwegs. Einige packen je 6 gleichgroße (r = 4 cm) Apfelsinen in Geschenkpackungen ein. Von oben sieht das dann so aus:

631 2

Wie groß sind Umfang und Flächeninhalt es gleichseitigen Dreiecks ABC? 8 blaue Punkte.

Mike hat auf einer solchen Apfelsine (r = 4 cm) die drei Punkte A, B, C gemalt und durch Kreisbögen verbunden. C liegt auf dem „Nordpol“ der kugelförmigen Apfelsine. Die Punkte A und B auf dem „Äquator“. Der Mittelpunkt M (von der Apfelsine), A und B bilden ein gleichseitiges Dreieck. Wie groß sind Umfang und Flächeninhalt des Dreiecks ABC? Mit Herleitung der Formeln 10 rote Punkte. (gemeint sind Formeln zur Berechnung von Kugeldreiecken.)

631 3

Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

631 memory

Termin der Abgabe 27.02.2020. Ultimo termine di scadenza per l´invio è il 27.02.1920. Deadline for solution is the 27th. February 2019. Date limite pour la solution 27.02.2020. Soluciones hasta el 27.02.2020. Beadási határidő 2020.02.27.

hun

Narancsfeladat

631

A Chemnitzi Schulmodell tanulói Paternóba (Szicília) utaztak narancsot szüretelni. Néhányan betesznek 6 egyenlő nagyságú (r = 4 cm) narancsot egy ajándékdobozba. Fentről így néz ez ki:

631 2

Mekkora a kerülete és a területe az egyenlő szárú ABC háromszögnek? 8 kék pont

Mike egy ilyen (r = 4 cm) narancsra rajzolta a három pontot (A,B és C) és körívekkel összekötötte ezeket. A C pont helyezkedik el a gömbalakú narancs északi pólusán. A és B pont pedig az „egyenlítőn”. Az M középpont, az A és a B pont egy egyenlő szárú háromszöget tesz ki. Mekkora a kerülete és a területe az ABC háromszögnek? A formák levezetése 10 piros pontot ér.

631 3

A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

631 memory

fr

Exercice orange

631


Encore une fois, les élèves de l'école modèle Chemnitz sont en route pour Paterno (Sicile) pour la récolte d'oranges. Certains emballent 6 oranges de taille égale (r = 4 cm) dans des coffrets cadeaux. D'en haut, cela ressemble à ceci:

631 2


Quelle est la taille et l'aire du triangle équilatéral ABC? 8 points bleus.
Mike a peint les trois points A, B, C sur une telle orange (r = 4 cm) et les a connectés avec des arcs. C se trouve sur le "pôle nord" de l'orange sphérique. Points A et B sur «l'équateur». Le centre M, A et B forment un triangle équilatéral. Quelle est la taille et l'aire du triangle ABC? Avec la dérivation des formules 10 points rouges.

631 3

La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

631 memory

sp

631

Otra vez los alumnos del Chemnitzer Schulmodell están en Paterno (Sicilia) para recolectar naranjas. Unos ponen 6 naranjas del mismo tamaño (r = 4 cm) en cajitas de regalo. Desde arriba se ve así:

631 2

¿Cuánto miden área y perímetro del triángulo equilátero ABC? - 8 puntos azules.

Mike ha trazado los tres puntos A, B y C en una naranja del radio r = 4 cm. C está en el „polo norte“ de está naranja. Los puntos A y B están en el „ecuador“. El punto central M, A y B forman un triángulo equilátero. ¿De cuál tamaño están área y perímetro del triángulo ABC? Con derivación y fórmulas: 10 puntos rojos.

631 3

Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

631 memory

en

orange task

631

Again students of the Chemnitzer Schulmodell are on their way to be part of the orange harvest in Sicily. Some put 6 same sized (r = 4 cm) oranges in gift boxes. From above it looks like this:

631 2

How big are perimeter and area of the equilateral triangle? – 8 blue points.

Mike has drawn the three points A, B, C on one such orange. (r = 4 cm) and connected them through arcs. C is located on the “north pole” of the spherical orange. The points A and B are located on the “equator”. The center M, A and B form an equilateral triangle. How big are perimeter and area of the triangle ABC? Through the derivation of the formula you will get 10 red points.

631 3

Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

631 memory

it

Compito delle arancie

631

Gli alunni del Chemnitzer Schulmodell sono di nuovo a Paterno (Sicilia) per la raccolta delle arancie.

Qualcuni incartano sempre 6 arancie delle stessa misura (r = 4 cm) in confezioni regalo. Visto da sopra, sembra così:

631 2

Quale sono la superficie e la circonferenza del triangolo equilatero ABC? 8 punti blu

Mike ha disegnato su una di queste arancie (r = 4 cm) i punti A, B, C e collegato con archi circolari. C sta sol “polo nord” dell’ arancia sferica, i punti A e B sul l’ “equatore”. Il centro M, A e B formano un triangolo equilatero. Quale sono la superficie e la circonferenza del triangolo ABC? Con derivazione delle formule 10 punti rossi

631 3

La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

631 memory

Lösung/solution/soluzione/résultat:
Fotos mit echten Apfelsinen kommen noch.
Musterlösungen von Karlludwig --> pdf <-- und Paulchen --> pdf <--, danke.


Aufgabe 8

632. Wertungsaufgabe

„Sind die gleichseitigen Dreiecke und die Quadrate, die du ausgeschnitten hast, alle gleich groß?“, fragte Bernd seine Schwester. „Ja, die haben alle die Kantenlänge a = 4 cm. Ich lege daraus Figuren und ermittle die Anzahl der Ecken. Ich nehme so viele von den Dreiecken oder Quadraten wie ich möchte. Schön Kante an Kante legen.“
Quadrat + Quadrat ergibt ein Rechteck, das hat 4 Ecken. Dreieck + Dreieck ergibt ein Rhombus, das hat auch 4 Ecken. Ein Quadrat + ein Dreieck ergibt ein 5-Eck, das, wie der Name sagt, 5 Ecken hat. Was man kombiniert, ist beliebig, die Figur darf aber keine Löcher haben und soll konvex sein.
Je 3 blaue Punkte für eine Figur mit 7 bzw. 8 Ecken.
Je 3 rote Punkte für eine Figur mit 9 bzw. 10 Ecken. Bernd meint, aus den vielen Dreiecke und Quadraten ließe sich bestimmt jedes konvexe n- Eck legen (n>2), wenn man nur lange genug probiert. Hat er Recht? Noch einmal 3 rote Punkte.
Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

632 mainzel

Termin der Abgabe 05.03.2020. Ultimo termine di scadenza per l´invio è il 05.03.1920. Deadline for solution is the 5th. March 2020. Date limite pour la solution 05.03.2020. Soluciones hasta el 05.03.2020. Beadási határidő 2020.03.05.

hun

„Az egyenlő szárú háromszögek és négyszögek, amiket kivágtál, mind egyenlő nagyságúak?” - kérdezte Bernd a nővérét. „ Igen, mindegyik éle a = 4 cm. A formákat egymás mellé téve hozom létre a sokszögeket. Annyit veszek a három és négyszögekből, amennyit szeretnék. Szépen élt az élhez teszem. „Négyszög és négyszög egy téglalapot alkot, aminek 4 sarka van. Háromszög és háromszög rombuszt hoz létre, aminek ugyancsak 4 sarka van. Egy négyszög és egy háromszög pedig egy ötszöget, aminek,mint a nevében is áll, öt szöge van. Tetszőlegesen lehet a formákat kombinálni, de nem lehet benne lyuk, konvexnek kell lennie. 3-3 kék pont egy 7 illetve 8 szögű formáért. 3-3 piros pont egy-egy 9 illetve 10 szögű formáért. Bernd szerint sok három és négyszögből biztosan ki lehet alakítani minden konvex sokszöget (n>;2), ha az ember kitartóan próbálja. Igaza van? Még egyszer 3 piros pont
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

632 mainzel

fr

"Les triangles équilatéraux et les carrés que tu découpes, sont-ils tous de la même taille?", a demandé Bernd à sa sœur. "Oui, ils ont tous la longueur du bord a = 4 cm. J'en pose des figures et je détermine le nombre de coins. Je prends autant de triangles ou de carrés que je veux, déposé bord à bord.
Carré + carré donne un rectangle à 4 coins. Triangle + triangle donne un losange, qui a également 4 coins. Un carré + un triangle donne un 5 coins qui, comme son nom l'indique, a 5 coins. Ce que tu combine est arbitraire, mais la figure ne doit pas avoir de trous et doit être convexe.
3 points bleus chacun pour une figure à 7 ou 8 coins.
3 points rouges chacun pour une figure à 9 ou 10 coins.
Bernd pense que n'importe quel n-coin convexe (n>2) peut être fait à partir des nombreux triangles et carrés si on essaye seulement assez longtemps. A-t-il raison? Encore 3 points rouges.
La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

632 mainzel

esp

„Todos estos triángulos equiláteros y cuadrados que has recortado son del mismo tamaño?, le preguntó Bernd a su hermana. „Sí, todos tienen la longitud de cantos de a = 4 cm. Con éstos coloco figuras y calculo la cantidad de esquinas. Tomo cuántos cuadrados y triángulos como quiera y les pongo siempre canto a canto.“
Cuadrado + cuadrado da como resultado un rectángulo con 4 esquinas. Triángulo + triángulo da como resultado un rombo con 4 esquinas. Cuadrado + triángulo da como resultado un pentágono con 5 esquinas. Generalmente se
puede combinar arbitrariamente, pero la figura no debe tener agujeros y tiene que ser convexo.
Cada vez 3 puntos azules para una figura de 7 o sea 8 esquinas.
Cada vez 3 puntos rojos para una figura de 9 o sea 10 esquinas.
Bernd dice que con todos estos triángulos y cuadrados seguramente se podría construir cada polígono regular que sea (n>2). ¿Tiene razón? Otra vez 3 puntos rojos.
Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

632 mainzel

en

„Do those equilateral triangles and squares, that you did cut out, have the same size?“, Bernd asked his sister. „Yes, they all do have the same edge length a = 4 cm. I use them to position figures and calculate the number of edges. I take as many triangles and squares as I like. Nicely put edge to edge.“
Square and square add up to a rectangle, that has 4 edges. Triangle and triangle add up to a rhomb, that has 4 edges too. One square and one triangle add up to a pentagon, that has 5 edges. What you combine is your choice, the figure is not allowed to have any holes and has to be convex.
3 blue points for each figure with 7 to 8 edges.
3 red points for each figure with 9 to 10 edges. Bernd states that with all the triangles and squares you can create every convex n-edge (n>2), if you only try long enough. Is he right? Another 3 red points.
Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

632 mainzel

it

“Hanno tutti la stessa misura I triangoli equilateri ed i quadratic he hai ritagliati?”, Bernd chiedeva sua sorella. “Sì. Hanno tutti la lunghezza degli spigoli a = 4 cm. Ne formo delle figure e localizzo il numero degli angoli. Prendo quanti dei triangoli e quadrati he voglio e li metto accuratamente spigolo a spigolo.”
Quadrato + quadrato formano un rettangolo che ha 4 angoli. Triangolo + triangolo formano un rombo che ha anche 4 angoli. Un quadrato + un triangolo formano un pentagono che ha 5 angoli. Non importa cosa si combini, basta che la figura non abbia buchi, sia convesso.
3 punti blu per una figura con 7 angoli e altri 3 per una con 8 angoli.
3 punti rossi per una figura con 9 angoli e altri 3 per una con 10 angoli.
Bernd afferma che con abbastanza di questi triangoli e quadrati si possa formare ogni poligono convesso. Ha ragione? Altri 3 punti rossi
La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

632 mainzel 

Lösung/solution/soluzione/résultat:
Die geforderten n-Ecke ließen sich in mehreren Varianten finden. Auch für die Überlegung von Bernd (oder besser gesagt deren Widerlegung) gab es mehrere Varianten. Hier die Überlegungen von Reinhold M., danke

Als Vorüberlegung beginne ich mal wieder mit dem Schluss: in einem (nicht überschlagenen...) n-Eck ist die (Innen-)Winkelsumme W gleich (n - 2) * 180°. Ist es konvex, so ist jeder der Winkel kleiner als 180°.
In unserem Fall, der Zusammensetzung von gleichseitigen Dreiecken mit Innenwinkeln von 60° und Quadraten mit Innenwinkeln von 90°, kommen nur folgende vier Innenwinkelgrößen in Frage:
 60° (ein Dreieck),
 90° (ein Quadrat),
 120° (zwei Dreiecke),
 150° (ein Dreieck und ein Quadrat).
Damit ergibt sich als obere Schranke für die Winkelsumme W
 W = (n - 2) * 180° <= n * 150°;
folglich gilt
 n <= 2 * 180° / (180° - 150°) = 12.
Bernd hat also mit seiner roten Vermutung nicht Recht.

Nun noch die Konstruktionsbeispiele für n = 7 bis n = 10. Da alle Seitenlängen gleich sind, ist die Korrektheit der Konstruktion gezeigt, wenn alle Innenwinkel kleiner als 180° sind (wobei = 180° zusätzlich zulässig ist und nicht zu den Innenwinkeln zählt), die Innenwinkelsumme gleich (n - 2) * 180° ist sowie die Winkelsumme der innerhalb des Polygons liegenden Eckenberührungspunkte der Einzelteile jeweils gleich 360° sind. Der Anhang illustriert die Konstruktionsbeschreibungen (allerdings ohne Blau- bzw. Rotfärbung...).

- Ein blaues Siebeneck erhält man beispielsweise, wenn man quasi in einem geschlossenen Kreis aneinander legt
 Quadrat - Dreieck - Quadrat - Dreieck - Dreieck (das an das erste Quadrat anschließt).
Probe:
 Innenwinkel 90° + 150° + 150° + 90° + 150° + 120° + 150° = 900° = 5 * 180°,
 ein innerer Berührungspunkt 90° + 60° + 90° + 60° + 60° = 360°.

- Ein blaues Achteck erhält man beispielsweise, wenn man zunächst zwei Dreiecke an gegenüberliegende Seiten eines Quadrats anlegt, diese Konstruktion mit anderen Teilen ein zweites Mal durchführt, beide Flächen an zwei offenen Quadratseiten aneinanderlegt und beide verbliebenen Lücken mit Dreiecken auffüllt.
Probe:
 Innenwinkel 4 * 150° + 4 * 120° = 1080° = 6 * 180°,
 zwei durch eine Quadratseite verbundene innere Berührungspunkte mit jeweils 2 * 90° + 3 * 60° = 360°.

- Ein rotes Neuneck erhält man beispielsweise, wenn man an die drei Seiten eines Dreiecks jeweils ein Quadrat anlegt und die Lücken zwischen ihnen mit jeweils zwei Dreiecken füllt.
Probe:
 Innenwinkel 6 * 150° + 3 * 120° = 1260° = 7 * 180°,
 drei paarweise durch eine Dreiecksseite verbundene innere Berührungspunkte mit jeweils 2 * 90° + 3 * 60° = 360°.

- Ein rotes Zehneck erhält man beispielsweise, wenn man an die vier Seiten eines aus zwei Dreiecken bestehenden Rhombus' jeweils ein Quadrat legt und die Lücken zwischen ihnen abwechselnd mit zwei Dreiecken (an den Spitzen des Rhombus) bzw. einem Dreieck auffüllt.
Probe:
 Innenwinkel: 8 * 150° + 2 * 120° = 1440° = 8 * 180°,
 vier paarweise durch eine Dreieckseite verbundene innere Berührungspunkte mit jeweils 2 * 90° + 3 * 60° = 360° (kein Unterschied zwischen den zwei Sorten - ein inneres und zwei äußere bzw. ein äußeres und zwei innere Dreiecke).

Das Mainzelmännchenrätsel habe ich zu
 ABC /  BD = BE
   -     *    +
   A +  BA = BE
   =     =    =
 ACF - BFC = AF
umgeschrieben. Zunächst folgt der 3. Zeile
 C = 0, A + F = 10, B + 1 = A
und damit der 3. Spalte
 B = 1, A = 2, F = 8, E = 4
und schließlich der 1. Zeile bzw. 2. Spalte
 D = 5.
Die Lösung ist somit zusammengefasst
 210 /  15 = 14
   -     *    +
   2 +  12 = 14
   =     =    =
 208 - 180 = 28.

632 Reinhold

 


Aufgabe 9

633. Wertungsaufgabe

633

„Was hast du denn gebastelt“?, fragte Bernd seine Schwester. „Wir haben gelernt, wie man aus Kreisen Mantelflächen von Kegeln ausschneiden kann. Ich habe davon mehrere gleichgroße angefertigt.. Anschließend habe mal so einen Doppelkegel gebastelt.. Die Kegel sind gerade Kreiskegel.“ „Verstehe.“
Wie groß sind Volumen und (sichtbare) Oberfläche des Doppelkegels, wenn der Radius des Kreises um M (Mittelpunkt von AB) 3,0 cm groß ist und der Abstand von A und B 12 cm beträgt? 4 blaue Punkte.
Ist es möglich, wenn man Volumen und Oberflächeninhalt eines solchen Doppelkegels kennt, den Abstand AB und den Radius eindeutig zu ermitteln? 6 rote Punkte
Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

633 schach

Termin der Abgabe 12.03.2020. Ultimo termine di scadenza per l´invio è il 12.03.1920. Deadline for solution is the 12th. March 2020. Date limite pour la solution 12.03.2020. Soluciones hasta el 12.03.2020. Beadási határidő 2020.03.12.

hun

633

„Mit alkottál” – kérdezte a nővérét Bernd. „Azt tanultuk, hogyan lehet egy körből a kúp külső felületét egy vágással megcsinálni. Több különböző méretűt is készítettem. Valamint egy dupla kúpot is. A kúpok egyenes körkúpok.” „Értem.”
Mekkora a térfogata és a „látható” felülete a dupla kúpnak, ha a körök sugara 3 cm (az M pontból, ami az AB középpontja) és az AB távolság 12 cm? 4 kék pont
Meg lehet pontosan határozni egy ilyen dupla kúp AB szakaszának és sugarának nagyságát, ha a térfogatát és a felszínét tudjuk? 6 piros pont
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

633 schach

fr

633

Qu'as-tu fait? », demanda Bernd à sa sœur. «Nous avons appris à découper la surface des cônes des cercles. J'en ai fait plusieurs de la même taille.. Ensuite j'ai construit un double cône. Les cônes sont des cônes circulaires droits." " Je vois".
Quel est le volume et la surface (visible) du double cône si le rayon du cercle autour de M (centre de AB) est de 3,0 cm et la distance entre A et B est de 12 cm? 4 points bleus.
Si on connait le volume et la surface d'un tel double cône, est-il possible de déterminer clairement la distance AB et le rayon? 6 points rouges
La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

633 schach

esp

633

„¿Qué es lo que has construido?“, le preguntó Bernd a su hermana. „En la escuela hemos aprendido cómo se pueden recortar superficies convexas para conos de círculos. He hecho varios del mismo tamaño. Después he construido un cono doble. Estos dos conos son conos circulares rectos.“ – „Vale.“
¿Cuán grande  son volumen y superficie (visible) del cono doble si el rádio del círculo alrededor de M (centro de AB) mide 3,0 cm y la distancia entre a y B mide 12 cm? 4 puntos azules.
Si se conoce el volumen y el área de un cono doble así, ¿es posible calcular el rádio inequívocadamente? 6 puntos rojos.
Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

633 schach

en

633

„What kind of handicraft did you do“?, Bernd asked his sister. „We have learned how to cut out the curved surface areas from cones. I created some more of them. Subsequently I created one double cone. The cones are even circle cones.“ „I do understand.“
How big are volume and visible area of the double cone, if the radius of the circle around M (center of AB) is 3,0 cm and the distance between A and B is 12 cm? 4 blue points.
Is it possible, to calculate the distance between AB and the radius, if you know volume and surface area of such a double cone? 6 red points.
Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

633 schach

it

633

„Cosa hai fabbricato?“, Bernd chiedeva a sua sorella. “Abbiamo imparato come, usando cerchi, si possono ritagliare superficie esterne di coni diritti. Ne ho fatte alcune della stessa misura. Poi ho costruito un cono doppio.” – “Capisco.”
Quale sono il volume e la superficie visibile del cono doppio, se il semidiametro del cerchio col centro M (medio del segment AB) sia 3,0 cm e la distanza entro I punti A e B sia 12 cm? – 4 punti blu
È possible, sapendo il volume e la superficie esterna di un tale cono doppio, di determinare il semidiametro e la distanza AB in modo univoco? - 6 punti blu
La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

633 schach

Lösung/solution/soluzione/résultat:
Bei roten "Einsendungen" wurde ab und an übersehen, das gefragt war,  ob bei der Vorgabe von Volumen und Oberfläche die Frage nach h und r auf genau eine Lösung führt ...
Musterlösung von calvin, danke. --> pdf <--


Aufgabe 10

634. Wertungsaufgabe

„Das sieht gut aus. Sind das gleichseitige Dreiecke in grünen Quadraten?“; frage Mike. „Aber ja und die Quadrate haben jeweils eine Kantenlänge von 8 cm.“, sagte Lisa.

634 blau 634 rot

Wie groß ist Flächeninhalt und Umfang des blauen Dreiecks? (3 blaue Punkte)
Wie groß ist Flächeninhalt und Umfang des roten Dreiecks? (4 rote Punkte)

Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

634 kannen

Termin der Abgabe 19.03.2020. Ultimo termine di scadenza per l´invio è il 19.03.1920. Deadline for solution is the 19th. March 2020. Date limite pour la solution 19.03.2020. Soluciones hasta el 19.03.2020. Beadási határidő 2020.03.19.

hun

„Ez nagyon jól néz ki. Ezek egyenlő oldalú háromszögek a zöld négyszögekben?” – kérdezte Mike. „Igen és a négyszögek élhossza egyenként 8 cm.” – válaszolta Lisa.

634 blau 634 rot

Mekkora a területe és a kerülete a kék háromszögnek? (3 kék pont)
Mekkora a területe és a kerülete a piros háromszögnek? (4 piros pont)
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

634 kannen

fr

"Ça a l'air bien. Le triangle équilatéral est-il dans des carrés verts? », demande Mike. "Mais oui, et les carrés ont chacun une longueur de bord de 8 cm", a déclaré Lisa.

634 blau 634 rot

Quelle est la superficie et la circonférence du triangle bleu? (3 points bleus)
Quelle est la superficie et la circonférence du triangle rouge? (4 points rouges)
La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

634 kannen

esp

“Esto se ve bien. ¿Son triángulos equiláteros dentro de cuadrados verdes?“ preguntó Mike. “Pues sí, y los cuadrados tienen los cantos de la misma longitud de 8 cm“, respondió Lisa.

634 blau 634 rot

¿Cuán grande son área y perímetro del triángulo azul? (3 puntos azules)
¿Qué tamaño tienen área y perímetro del triángulo rojo? (4 puntos rojos)
Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

634 kannen

en

„This does look great. Are those equilateral triangles inside the green squares?“; Mike asked. „Yes, and all squares do have the same edge length of 8 cm.“, answered Lisa.

634 blau 634 rot
How big are area and perimeter of the blue triangle? (3 blue points)
How big are area and perimeter of the red triangle? (4 red points)
Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

634 kannen

it

„Che bello!! Sono triangoli equilateri dentro quadrati verdi?“, Mike chiedeva. „Ma sì; ed i quadrati hanno una lunghezza del lato di 8 cm ognuno.“, diceva Lisa.

634 blau 634 rot

Quale sono la superficie e la circonferenza del triangolo blu? (3 punti blu)
Quale sono la superficie e la circonferenza del triangolo rosso? (4 punti rossi)
La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

634 kannen

Lösung/solution/soluzione/résultat:

Zwei verschiedene Lösungsvarianten bei rot. Pythagoras bei Maximilian --> pdf <-- und Winkelbeziehung im rechtwinkligen Dreieck bei Linus --> pdf <-- Danke.


Aufgabe 11

635. Wertungsaufgabe

„Unser Lehrer hat uns von einer Neujahrsformel erzählt“, berichtete Maria ihrem Bruder. „Berechnet er, wann das neue Jahr beginnt?“ „Nein, er hat die Formel am 1.1.2020 entdeckt.. Es geht um Flächeninhalte bei „Fadengrafiken“.
In einem Koordinatensystem (01=1 cm)werden Strecken eingetragen. Auf den Bildern sieht man die Beispiele n = 1, n=2 und n=5. Die äußeren Schnittpunkte in jedem Quadranten und die n-ten Punkte auf der Achse bilden ein schönes Vieleck. Der Flächeninhalt einer schönen Fläche lassen sich mit der Neujahrsformel A = 2/3 * n *(n+2) berechnen.

635 faden 1

635 faden 2

635 faden 5

Wie groß ist der Umfang der Fläche für n = 2? Vollständige Berechnung 6 blaue Punkte.
Beweis der Richtigkeit der Neujahrsformel für beliebige n (n >0) 12 rote Punkte.

Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

 635 tomaten

Termin der Abgabe 26.03.2020. Ultimo termine di scadenza per l´invio è il 26.03.1920. Deadline for solution is the 26th. March 2020. Date limite pour la solution 26.03.2020. Soluciones hasta el 26.03.2020. Beadási határidő 2020.03.26.

hun

„A tanárunk egy új Újévi képletről beszélt” – mondta Mária a testvérének. „ Kiszámolja, mikor kezdődik az újév? „ „Nem, az 1.1.2020 képletet fedezte fel. A fonalgrafikon területéről van szó.”
Egy koordináta rendszerben (01=1 cm) szakaszokat veszünk fel. Az ábrán például az n = 1, n=2 és n=5 képét láthatjuk. A külső metszéspontok minden negyedben és a tengelyek n-edik pontjaban egy-egy szép négyszöget alkotnak. A területe egy szép felületnek az Újévi képlettel A = 2/3 * n *(n+2) számolható ki.

635 faden 1

635 faden 2

635 faden 5

Mekkora a kerülete és a területe, ha n = 2? Számítás 6 kék pont. Az Újévi képlet bizonyítása tetszőleges n (n >0) esetén 12 piros pont.
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

635 tomaten

fr

"Notre professeur nous a parlé d'une formule du Nouvel An", a expliqué Maria à son frère. "Calcule-t-il quand la nouvelle année commence?" "Non, il a découvert la formule le 1er janvier 2020. Il s'agit du domaine des" graphiques de fils ".
"Les lignes sont saisies dans un système de coordonnées (01 = 1 cm). Tu peux voir les exemples n = 1, n = 2 et n = 5 sur les images. Les intersections extérieures dans chaque quadrant et les n-ièmes points sur l'axe forment un joli polygone. La superficie d'une belle région peut être calculée en utilisant la formule du Nouvel An A = 2/3 * n * (n + 2).

635 faden 1

635 faden 2

635 faden 5

Quelle est la taille de la zone pour n = 2? Calcul complet 6 points bleus.
Preuve de l'exactitude de la formule du Nouvel An pour n (n> 0), 12 points rouges.
La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

635 tomaten

esp

“Nuestro profesor nos ha contado de una fórmula del Año Nuevo”, le contó María a su hermano. “¿Calcula, cuándo empieza el Año Nuevo?” – “No, ha descubierto la fórmula el 1.1.2020. Se trata de áreas en gráficos de líneas.”
Se marcan líneas en un sistema de coordenadas (01=1cm). En los imágenes se ve ejemplos n=1, n=2 y n=5. Los puntos de intersección exteriores en cada cuadrante y los puntos n al eje forman un polígono hermoso. Se puede calcular el área de este plano hermoso con la fórmula del Año Nuevo A= 2/3*n*(n+2).

635 faden 1

635 faden 2

635 faden 5

¿De qué tamaño es el perímetro del plano para n=2? Para el cálculo completo se recibe 6 puntos azules.
Para la prueba de la exactitud de la fórmula del Año Nuevo para cualquiera n (n>0) se recibe 12 puntos rojos.
Dimostrazione della correttezza della formula di capodanno per qualunque n (n > 0) – 12 punti rossi
Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

635 tomaten

en

„Our teacher told us about a formula for ‘New Years Eve’ “, Maria told her brother. „Does is calculate when the new year starts?“ „No, he found the formula on the 1st January 2020. It is about the area of so called „thread graphics“.“
Line segments are drawn into a coordinate system (01=1 cm). On the pictures you can see the examples n = 1, n=2 und n=5. The outer points of intersections in each quadrant and the n-points on the axis form a nice polygon. The area can be calculated by using the “New Years Eve” formular A = 2/3 * n *(n+2).

635 faden 1

635 faden 2

635 faden 5

How big is the perimeter for n = 2? Complete the calculation – 6 blue points.
Proof that the „New Year Eve“ formular is true for each n (n >0) – 12 red points.
Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

635 tomaten

it

“Nostro insegnante ci ha parlato di una formula di capodanno”, Maria raccontava a suo fratello. “Ha calcolato quando inizia l’ anno nuovo?”. “No, ha scoperto la formula il 1.1.2020. Tratta di superficie di “grafiche di filo”.”
In un Sistema di coordinate (01=1 cm) vengono inseriti segmenti. Qui sono illustrati gli esempi n = 1, n = 2, n = 5. I punti di intersezione esterni in ogni quadrante formano insieme ai punti ennesimi sulle asse un bel poligono. La sua superficie si calcola secondo la formula di capodanno: A = 2/3 * n * (n+2).

635 faden 1

635 faden 2

635 faden 5

Qual’ è la misura della circonferenza del poligono nel caso n = 2? (Calcolazione completa: 6 punti blu)

La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

635 tomaten

Lösung/solution/soluzione/résultat:

Drei (wie passend) Einsender haben in Einsendung explizit die Dreieckszahlen erwähnt: Hier ein Bild dazu von Aufgabe 453:
453 ls1
Als ich mit der Fadengrafik beschäftigt habe, stellte ich mit Verwunderung fest, dass die Flächeninhalte der "schönen" Fläche, meist ganzahlig waren. So machte ich mich auf den Weg den Zusammenhang zwischen n und dem Flächeninhalt zu erkunden und das, ohne (erst einmal) auf Schnittpunktsberechnungen zurückzugreifen. Untersucht habe ich dabei immer nur einen Quadranten, das mal 4 nun ja. Als ich die Teildreiecke in einem solchen Quadranten  mir anschaute sah ich plötzlich den Zusammenhang. Für n gibt es natürlich n Dreiecke. Deren Flächeninhalte (von außen nach innen, von klein nach groß) in Quadratzentimeter ließen sich wie folgt notieren und dann zu A addieren: a1/n+1) + a2/(n+1) + a3/(n+1) ... + an/n+1)= A Dabei sind die Zähler a die Dreieckszahlen als {1; 3; 6; 10; 15;...} Nun musste nur noch die Summenformel für Dreieckszahlen benutzt werden und dann * 4. Damit war die obige "Neujahrsformel" gefunden, entdeckt am 1.1.2020 am Nachmittag.
Hier nun verschiedene Ansätze von Lösern, danke. Birgits rote Aufgabe --> pdf <--, Karlludwig --> pdf <-- und Paulchen --> pdf <--

 

 


Aufgabe 12

636. Wertungsaufgabe

636 duerer vroten

„Diese Konstruktion eines Buchstaben nach der Anleitung von Albrecht Dürer kann ich gleich zweimal verwenden“, sagte Maria. „Wie das?“, fragte ihr Bruder Bernd. „Zu Dürers Zeiten wurde der Buchstabe als V, aber auch als U genutzt.“
Die Anleitung zur Konstruktion: ABCD ist ein Quadrat mit der Länge a, hier 10 cm). G ist der Mittelpunkt von AB. Die großen Kreise haben den Radius a/7, die kleinen Kreise haben den Radius a/15. DE=CF=a/10. Es ist G mit E und G mit F zu verbinden. Der linke Schenkel ist a/10 breit, der rechte Schenkel a/30.
Die Berechnungen:
Wie groß ist der Flächeninhalt der Fläche AGED - 2 blaue Punkte. Wie groß ist der Abstand ist der Abstand PR - 4 blaue Punkte. Wie groß sind Flächeninhalt und Umfang des roten V? - 8 rote Punkte. Zu beachten ist, dass die großen Kreise einen minimalen Abstand zu den Strecken EG bzw. EF haben. Die linke krummlinig begrenzte Fläche soll durch eine Strecke W V (senkrecht zu EG) begrenzt sein. W V ist eine Verlängerung des Radius des großen Kreises. Rechts analog.

636 luecke

Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

636 tempo

Termin der Abgabe 02.04.2020. Ultimo termine di scadenza per l´invio è il 02.04.1920. Deadline for solution is the 2th. April 2020. Date limite pour la solution 02.04.2020. Soluciones hasta el 02.04.2020. Beadási határidő 2020.04.02.

hun

636 duerer v

„Ennek a betűnek a szerkesztését Dürer útmutatója alapján rögtön kétszer is felhasználhatom.“ – mondta Mária. „Hogy-hogy?“ – kérdezte a testvére, Berndt. „Dürer idejében ezt a betűt nemcsak V-nek, hanem U-nak is használták.“
Útmutatás a szerkesztéshez: ABCD egy négyzet, hossza az a, 10 cm. G a középpontja az AB szakasznak. A nagy kör sugara a/7, a kicsié a/15. DE=CF=a/10. G pontot E és F ponttal kössük össze. A bal szár a/10, a jobb szár a/30 széles.
Számítások:
Mekkora a területe az AGED felületnek? – 2 kék pont
Mekkora a PR távolság? – 4 kék pont
Mekkora a területe és a kerülete a piros V-nek? – 8 piros pont
Vegyék figyelembe, hogy a piros körök minimális távolségra vannak az EG, valamint EF szakasztól. A bal görbe vonallal határolt felület egy WV szakasszal (merőleges EG-re) határolt. W V a meghosszabbítása a nagy kör sugarának. Jobb oldalon szintúgy.

636 luecke

A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

636 tempo

fr

636 duerer v

"Je peux utiliser cette construction d'une lettre selon les instructions d'Albrecht Dürer à deux reprises", a déclaré Maria. "Comment ça?", lui a demandé son frère Bernd. "Au temps de Dürer, la lettre était utilisée comme V, mais aussi comme U."
Instructions pour la construction: ABCD est un carré de la longueur a, (ici 10 cm). G est le centre d'AB. Les grands cercles ont le rayon a/7, les petits cercles ont le rayon a/15.
DE = CF = a/10. Connecter G avec E et G avec F. La jambe gauche est large de a/10, la jambe droite a/30.
Les calculs:
Quelle est la superficie de la zone AGED - 2 points bleus. Quelle est la distance PR - 4 points bleus. Quelle est l'aire et la taille du V rouge? - 8 points rouges. Il est à noter que les cercles rouges sont à une distance minimale des lignes EG et EF. La zone curviligne gauche doit être limitée par une distance W V (perpendiculaire à EG). W V est une extension du rayon du grand cercle. Analogue droit.

636 luecke

La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

636 tempo

esp

Las letras de Dürer

636 duerer v

“Esta construcción de una letra según Albrecht Dürer ya puedo usar dos veces”, dijo María. “¿Porqué?”, preguntó Bernd. “Porque en la época de Dürer usaban esta letra como ‘V’, pero también como ‘U’.”
Instrucciones para la construcción: ABCD es un cuadrado con la longitud de cantos a = 10 cm. El punto central de AB es G. Los círculos grandes tienen el rádio a/7. Los círculos pequeños tienen el rádio a/15. DE=CF=a/10. Se tiene que conectar G con E y G con F. El lado a la izquierda mide a/10 de ancho y el lado a la derecha a/30.
Los cálculos:
¿De qué tamaño es el área AGED? – 2 puntos azules. ¿Cuánto mide la distancia entre P y R? – 4 puntos azules.
¿Cuán grande son área y perímetro del V rojo? – 8 puntos rojos.
Hay que tener en cuenta que los círculos rojos tienen una distancia mínima hacia los segmentos rectilíneos EG y EF. El plano delimitado torcidamente a la izquierda se delimita por el segmento rectilíneo WV (perpendicular al segmento rectilíneo EG). WV es el alargamiento del radio del círculo grande. A la derecha análogo. 

Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

636 tempo

en

636 duerer v

„This construction of a letter by Albrecht Dürer I can use twice.“, said Maria. „How that?“, asked her brother Bernd. „At the time Dürer lived, the letter was used as V and as U.“
The construction instruction: ABCD is a square with a length a, in that case 10 cm. G is the center of AB. The large circles have a radius a/7, the small circles have a radius a/15. DE=CF=a/10. You have to connect G with E and E with F. The left arm is a/10 wide, the right arm a/30.

The calculation:
How big is the area AGED - 2 blue points. How big is the distance PR - 4 blue points. How big are area and perimeter of the red V? – 8 red points. You have to keep in mind that the red circles must have a minimum distance to the lines EG respectively EF. The left bent lined bordered area should be bordered by a line WV (perpendicular to EG). WV is a radius extension of the big circle. On the right side it is exactly the same.

636 luecke

Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

636 tempo

it

636 duerer v

“Questa costruzione di una lettera secondo Dürer posso usare per due cose”, diceva Maria. “Come?”, chiedeva suo fratello Bernd. “Ai tempi di Dürer, quella lettera era usata come V, ma anche come U.”
Ecco l’ istruzione della costruzione: ABCD è un quadrato con una lunghezza del lato a (in questo caso 10 cm). G è il centro del lato AB. I cerchi grandi hanno un semidiametro di a/7, I cerchi piccoli di a/15. DE = CF = a/10. Si collega G con E e G con F. Il lato sinistro ha una larghezza di a/10, il lato destro una di a/30.
Le calcolazioni:
Qual’ è la misura della superficie AGED? – due punti blu.
Qual’ è la distanza PR? – 4 punti blu.
Quale sono la superficie e la circonferenza del V rosso? – 8 punti rossi
Si badi al fatto che I cerchi rossi  hanno la distanza minima ai segmenti EG ossia EF. L’area curvilinea sinistra sia delimitata del segmento WV, che è la prolungazione del semidiametro del cerchio grande. Analogicamente a destra.

636 luecke

La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

636 tempo

Lösung/solution/soluzione/résultat:

Musterlösungen von calvin --> pdf <-- und Reinhold M., danke

Wenn wir das Quadrat in ein kartesisches Koordinatensystem mit dem Ursprung A und der Abszisse durch B sowie einer Zentimeterskala legen, so gilt zunächst (mit a = 10)

 A = (0, 0),

 B = (a, 0),

 C = (a, a),

 D = (0, a),

 E = (a/10, 10),

 F = (9/10 a, 10),

 G = (a/2, 0)

sowie

 AD = a,

 AG = a/2,

 DE = a/10.

Nun definiere ich noch folgende Punkte (wegen der Symmetrie der Verhältnisse um die Kreise meist nur links):

 H Mittelpunkt von DC,

 I Mittelpunkt des linken großen Kreises,

 J Mittelpunkt des linken kleinen Kreises,

 K Berührungspunkt des linken kleinen Kreises mit XP,

 L Berührungspunkt des linken kleinen Kreises mit DC,

 M Schnittpunkt von GF und UP,

 N Fußpunkt des Lots von X auf EG,

 O Fußpunkt des Lots von M auf EG,

 Q Fußpunkt des Lots von P auf EG,

 S Fußpunkt des Lots von R auf GF,

 Y Schnittpunkt zwischen der Tangente in W an den linken großen Kreis und DE,

 Z Fußpunkt des Lots von E auf YW.

Dann gilt zunächst

 HG = a,

 DH = a/2,

 EH = a/2 - a/10 = 2/5 a,

 IW = ID = a/7,

 DY = YW,

 JK = JL = a/15,

 PL = PK,

 OM = NX = QP = a/10,

 RS = a/30.

Weiter bezeichne ich den Winkel(HGE) mit x. Dann gilt auch Winkel(FGH) = x sowie

 Winkel(FGE) = 2x (Symmetrie DE = FC),

 90°-x = Winkel(GEH) (Winkelsumme Dreieck)

       = Winkel(EGA) (Wechselwinkel)

       = Winkel(XPR) (Stufenwinkel)

       = Winkel(WYE) (Stufenwinkel)

und

 Winkel(EPQ) = Winkel(SRF) = Winkel(YEZ) = x (Winkelsumme Dreieck bzw. Stufenwinkel),

 90°+x = Winkel(LJK) (Winkelsumme Viereck)

       = Winkel(DYW) (mit WYE 180°),

also auch

 Winkel(WID) = 90°-x (Winkelsumme Viereck),

 Winkel(WIY) = Winkel(YID) = Winkel(KPJ) = Winkel(JPL) = 1/2 (90°-x) = 45°-x/2,

 Winkel(DYI) = Winkel(IYW) = Winkel(LJP) = Winkel(PJK) = 1/2 (90°+x) = 45°+x/2 (alles Symmetrie),

 90°-2x = Winkel(OMG) (Winkelsumme Dreieck).

Für x wissen wir

 tan(x) = EH / HG = 2/5,

also

 x = arctan(2/5).

Daraus können wir mit Hilfe der bekannten trigonometrischen Formeln der gegenseitigen Darstellbarkeit, der Phasenverschiebung und des doppelten Winkels die (eventuell später) benötigten Winkelfunktionen für x, 2x, 90°-x, 45°-x/2, 90°+x, 45°+x/2 oder 90°-2x bestimmen (x und 2x sind kleiner 90° usw.):

 sin(x) = tan(x) / Wurzel(1 + tan^2(x)) = 2/Wurzel(29),

 cos(x) = Wurzel(1 - sin^2(x)) = 5/Wurzel(29),

 cot(x) = 1 / tan(x) = 5/2,

 sin(2x) = 2 sin(x) cos(x) = 20/29,

 cos(2x) = Wurzel(1 - sin^2(2x)) = 21/29,

 tan(2x) = sin(2x) / cos(2x) = 20/21,

 cot(2x) = 1 / tan(2x) = 21/20,

 sin(90°-x) = cos(x) = 5/Wurzel(29),

 cos(90°-x) = sin(x) = 2/Wurzel(29),

 tan(90°-x) = cot(x) = 5/2,

 cot(90°-x) = 1 / tan(90°-x) = 2/5,

 tan(45°-x/2) = sin(90°-x) / (1 + cos(90°-x)) = 1/5 (Wurzel(29) - 2),

 cot(45°-x/2) = 1 / tan(45°-x/2) = 1/5 (Wurzel(29) + 2),

 sin(45°-x/2) = Wurzel((1 - cos(90°-x)) / 2) = 1/58 Wurzel(1682 - 116 Wurzel(29)),

 cos(45°-x/2) = Wurzel(1 - sin^2(45-x/2)) = 1/58 Wurzel(1682 + 116 Wurzel(29)), 

 sin(90°+x) = cos(x) = 5/Wurzel(29),

 cos(90°+x) = - sin(x) = -2/Wurzel(29),

 tan(90°+x) = - cot(x) = -5/2,

 cot(90°+x) = 1 / tan(90°+x) = -2/5,

 tan(45°+x/2) = sin(90°+x) / (1 + cos(90°+x)) = 1/5 (Wurzel(29) + 2),

 cot(45°+x/2) = 1 / tan(45°+x/2) = 1/5 (Wurzel(29) - 2),

 sin(45°+x/2) = Wurzel((1 - cos(90°+x)) / 2) = 1/58 Wurzel(1682 + 116 Wurzel(29)),

 cos(45°+x/2) = Wurzel(1 - sin^2(45+x/2)) = 1/58 Wurzel(1682 - 116 Wurzel(29)),

 sin(90°-2x) = cos(2x) = 21/29,

 cos(90°-2x) = sin(2x) = 20/29,

 tan(90°-2x) = cot(2x) = 21/20,

 cot(90°-2x) = 1 / tan(90°-2x) = 20/21.

Damit steht das Rüstzeug zur Lösung bereit.

  1. AGED ist ein Trapez mit den Grundlinien AG = a/2 und DE = a/10 sowie der Höhe AD = a, so dass für den gesuchten Flächeninhalt Ablau gilt:

 Ablau = 1/2 (a/2 + a/10) a = 3/10 a^2.

Durch Einsetzen von a erhält man 30 m^2.

  1. Für die gesuchte Länge PR gilt

 PR = DC - DE - EP - RF - FC

    = 4/5 a - EP - RF.

Mit den oben hergeleiteten Winkelgrößen und Winkelfunktionen folgt nun

 EP = a/10 / cos(x) = Wurzel(29)/50 a,

 RF = a/30 / cos(x) = Wurzel(29)/150 a,

 PR = 2/75 (30 - Wurzel(29)) a.

Durch Einsetzen von a erhält man 4/15 (30 - Wurzel(29)) oder ca. 6,56 cm.

  1. Der Umfang Urot des "V" besteht wegen der (teilweisen) Symmetrie aus

 Urot = 2*XK + 2*Bogen(KL) + 2*PL + EP + RF + 2*DE + 2*Bogen(DW) + 2*WV + 2*VG.

Dazu benötigen wir noch

 PL = PK = JL cot(Winkel(JPL)) = a/15 cot(45°-x/2) = a/75 (Wurzel(29) + 2),

 Bogen(KL) = 2 Pi JL * Winkel(LJK)/360° = (90°+x)/2700° Pi a,

 DY = YW = ID tan(Winkel(YID)) = a/7 tan(45°-x/2) = a/35 (Wurzel(29) - 2),

 YE = DE - DY = a/10 - a/35 (Wurzel(29) - 2) = a/70 (11 - 2 Wurzel(29)),

 WV = ZE = YE cos(Winkel(YEZ)) = a/406 (11 Wurzel(29) - 58),

 Bogen(DW) = 2 Pi ID * Winkel(WID)/360° = (90°-x)/1260° Pi a,

 EV = Wurzel(IE^2 - IV^2) = Wurzel((ID^2 + DE^2) - (IW + WV)^2)

    = Wurzel(a^2/49 + a^2/100 - (a/7 + a/406 (11 Wurzel(29) - 58))^2)= 18/1015 Wurzel(29) a,

 EG = a / sin(Winkel(EGA)) = a/5 Wurzel(29),

 VG = EG - EV = 37/203 Wurzel(29) a,

 PH = DH - DE - EP = a/2 - a/10 - Wurzel(29)/50 a = a/50 (20 - Wurzel(29)),

 PX = 1/2 PR / cos(Winkel(XPR)) = a/150 (30 Wurzel(29) - 29),

 XK = PX - PK = a/150 (28 Wurzel(29) - 33).

Zusammen erhalten wir

 Urot = 2*XK + 2*Bogen(KL) + 2*PL + EP + RF + 2*DE + 2*Bogen(DW) + 2*WV + 2*VG

   = a/75 (28 Wurzel(29) - 33) + (90°+x)/1350° Pi a + 2a/75 (Wurzel(29) + 2)

     + Wurzel(29)/50 a + Wurzel(29)/150 a + a/5 + (90°-x)/630° Pi a

     + a/203 (11 Wurzel(29) - 58) + 74/203 Wurzel(29) a

   = a/75 (32 Wurzel(29) - 14) + a/203 (85 Wurzel(29) - 58) + 2/4725° Pi a (495° - 2x)

   = a/15225 (12871 Wurzel(29) - 7192) + 2/4725° Pi a (495° - 2x).

Durch Einsetzen von a und x erhält man

 2/3045 (12871 Wurzel(29) - 7192) + 4/945° Pi (495° - 2 arctan(2/5))

oder ca. 46,80 cm.

  1. Die Fläche Arot des "V" besteht wegen der (teilweisen) Symmetrie aus

 Arot = 2*Bogendreieck(KLP) + 2*Bogendreieck(DWY) + 2*Trapez(YWVE) + Trapez(EGMP) + Trapez(MFRX).

Dazu benötigen wir noch

 Bogendreieck(KLP) = 2*Dreieck(PJL) - Kreissektor(KJL)

   = 2 * 1/2 PL JL - Pi JL^2 * Winkel(LJK)/360°

   = a^2/1125 (Wurzel(29) + 2) - (90°+x)/81000° Pi a^2,

 Bogendreieck(DWY) = 2*Dreieck(DIY) - Kreissektor(DIW)

   = 2 * 1/2 ID DY - Pi ID^2 Winkel(WID)/360°

   = a^2/245 (Wurzel(29) - 2) - (90°-x)/17640° Pi a^2,

 Trapez(YWVE) = 1/2 (YW + EV) WV

   = a^2/824180 (47 Wurzel(29) - 58) (11 Wurzel(29) - 58)

   = a^2/28420 (633 - 116 Wurzel(29)),

 MU = MG = MO / cos(Winkel(OMG)) = 29/200 a,

 PM = PU - MU = EG - MU = a/200 (40 Wurzel(29) - 29),

 Trapez(EGMP) = 1/2 (EG + PM) a/10

   = a^2/4000 (80 Wurzel(29) - 29),

 XR = PX = a/150 (30 Wurzel(29) - 29),

 GM = MU = 29/200 a,

 MF = GF - GM = EG - GM = a/200 (40 Wurzel(29) - 29),

 Trapez(MFRX) = 1/2 (MF + XR) a/30

   = a^2/36000 (240 Wurzel(29) - 203).

Zusammen erhalten wir

 Arot = 2*Bogendreieck(KLP) + 2*Bogendreieck(DWY) + 2*Trapez(YWVE) + Trapez(EGMP) + Trapez(MFRX)

   = 2a^2/1125 (Wurzel(29) + 2) - (90°+x)/40500° Pi a^2

     + 2a^2/245 (Wurzel(29) - 2) - (90°-x)/8820° Pi a^2

     + a^2/14210 (633 - 116 Wurzel(29))

     + a^2/4000 (80 Wurzel(29) - 29)

     + a^2/36000 (240 Wurzel(29) - 203)

   = a^2/1598625 (30192 + 45472 Wurzel(29)) - Pi/496125° a^2 (6165° - 44 x).

Durch Einsetzen von a und x erhält man

 4/63945 (30192 + 45472 Wurzel(29)) - 4/19845° Pi (6165° - 44 arctan(2/5))

oder ca. 13,9100 cm^2.

Das Britannienrätsel habe ich zu
 ABCD - CEF = EGF
    /     -     -
    B * BHI = DAG
    =     =     =
  EBF - JCG = BEI
umgeschrieben. Dann folgt der 1. Zeile zunächst
 A = 1, 2F = D oder 2F = D + 10, auf jeden Fall aber D gerade,
und damit der 2. Zeile
 B = 2, D = 4, H = 0 und also F = 7.
Der 3. Spalte folgt dann
 E = 6, G = 8, I = 9
und damit der 2. Spalte
 C = 5, J = 3.
Die Lösung ist somit zusammengefasst
 1254 - 567 = 687
    /     -     -
    2 * 209 = 418
    =     =     =
  627 - 358 = 269.

Mit freundlichen Grüßen
Reinhold


Auswertung Serie 53

Gewinner des Buchpreises sind  Alexander Wolf, Heloh und Albert A., herzlichen Glückwunsch.

Auswertung Serie 53 (blaue Liste)

Platz Name Ort Summe Aufgabe
  625 626 627 628 629 630 631 632 633 634 635 636
1. Hirvi Bremerhaven 83 6 6 7 8 5 6 10 8 6 5 8 8
1. Calvin Crafty Wallenhorst 83 6 6 7 8 5 6 10 8 6 5 8 8
1. Karlludwig Cottbus 83 6 6 7 8 5 6 10 8 6 5 8 8
1. Magdalene Chemnitz 83 6 6 7 8 5 6 10 8 6 5 8 8
1. Paulchen Hunter Heidelberg 83 6 6 7 8 5 6 10 8 6 5 8 8
1. Reinhold M. Leipzig 83 6 6 7 8 5 6 10 8 6 5 8 8
2. Reka W. Siegerland 82 6 6 7 8 5 6 10 8 6 5 8 7
3. Axel Kaestner Chemnitz 81 6 6 7 8 3 6 10 8 6 5 8 8
3. Linus-Valentin Lohs Chemnitz 81 6 6 7 6 5 6 10 8 6 5 8 8
3. Alexander Wolf Aachen 81 6 6 7 6 5 6 10 8 6 5 8 8
3. Hans Amstetten 81 6 6 7 6 5 6 10 8 6 5 8 8
3. HeLoh Berlin 81 6 6 7 6 5 6 10 8 6 5 8 8
4. Kurt Schmidt Berlin 79 4 4 7 8 5 6 10 8 6 5 8 8
5. Albert A. Plauen 77 6 6 7 8 5 6 4 8 6 5 8 8
6. Maximilian Jena 75 6 6 7 8 5 6 10 8 6 5 8 -
6. Günter S. Hennef 75 6 5 7 8 5 - 10 8 6 5 8 7
7. Helmut Schneider Su-Ro 73 6 6 7 6 5 6 8 8 6 - 8 7
8. Birgit Grimmeisen Lahntal 71 4 6 7 8 5 6 - 8 6 5 8 8
9. Laura Jane Abai Chemnitz 67 6 6 7 8 5 - - 8 6 5 8 8
9. Janet A. Chemnitz 67 6 6 7 8 5 - - 8 6 5 8 8
10. Gerhard Palme Schwabmünchen 56 - - - - 5 6 10 8 6 5 8 8
11. Juli Marie Fromm Chemnitz 52 4 4 5 6 3 4 8 6 - - 6 6
12. Louisa Melzer Chemnitz 34 6 4 7 6 5 - 6 - - - - -
13. Dana Ingolstadt 32 - - - - - - 10 8 6 - - 8
14. StefanFinke112 Wittstock/Dosse 28 - - 5 - - - - - 4 3 8 8
14. Tina Winkler Chemnitz 28 4 - - 3 3 4 8 - 6 - - -
15. Fynn Jeromin Engelskirchen 26 6 6 7 7 - - - - - - - -
16. Paula Anita Beneking Chemnitz 23 - 4 5 - 4 - - - 4 - 6 -
16. Paula Rauschenbach Chemnitz 23 4 4 - - 3 - - 3 4 3 - 2
17. Ronja Kempe Chemnitz 21 - - 7 8 - - - 3 - 3 - -
18. Maya Melchert Chemnitz 19 - 4 5 - - - - 6 4 - - -
19. Anabel Pötschke Chemnitz 18 - - 5 6 - - - - 4 3 - -
19. Frank R. Leipzig 18 - - - 6 - - - 6 - - 6 -
20. Josefin Buttler Chemnitz 17 4 4 - - - - 3 3 3 - - -
20. Siegfried Herrmann Greiz 17 - - 7 - 5 5 - - - - - -
21. Othmar Z. Weimar (Lahn) 15 4 - - - 5 6 - - - - - -
21. Tabea Raupach Chemnitz 15 - 4 - 4 - - - 3 4 - - -
21. Helene Kübeck Chemnitz 15 - 4 - 4 - - - 3 4 - - -
21. Chiara Röder Chemnitz 15 - 4 4 - - - - 3 4 - - -
21. Judith Wagner Chemnitz 15 4 - 5 - 2 - - - 4 - - -
21. Elisa Falke Chemnitz 15 4 6 - - 1 - - - 4 - - -
22. Quentin Steinbach Chemnitz 13 - 4 - - 2 3 - - 4 - - -
22. Lydia Wagner Chemnitz 13 4 - 5 - 1 - - - 3 - - -
22. Marla Seidel Chemnitz 13 6 - - - 1 - - - 6 - - -
23. Adrian Amini Chemnitz 12 - - 3 - 2 - - - - 2 2 -
23. Pascal Lindner Chemnitz 12 - 4 4 - - - - - 3 1 - -
23. Hannes Jakob Wolf Chemnitz 12 - - - 6 - 2 - - 4 - - -
23. Marie Reichelt Chemnitz 12 - 4 4 - - - - - 4 - - -
24. Tabea Pohle Chemnitz 11 - - 5 - 2 - - - 4 - - -
24. Ava Seidel Chemnitz 11 - - 5 - 2 - - - 4 - - -
24. Jannik Ebermann Chemnitz 11 - 4 - - - 2 - 3 2 - - -
24. Florine Lorenz Chemnitz 11 - - 2 - - - 3 - - 3 - -
24. Dorothea Richter Chemnitz 11 - 3 2 - - - - 3 - 3 - -
24. Yannick Schädlich Chemnitz 11 - 4 - - 2 - - - 3 - 2 -
24. Niklas Trommer Chemnitz 11 - - - - 2 3 - - 3 3 - -
25. Lena Wagler Chemnitz 10 - - 5 - 1 - - - 4 - - -
25. Charlotte L. Bohley Chemnitz 10 - - - - - 4 - 6 - - - -
25. Michelle Oeser Chemnitz 10 4 - - - 2 - - - 4 - - -
25. Josie Sandig Chemnitz 10 4 - - - 2 - - - 4 - - -
25. Nina Richter Chemnitz 10 6 - - - 1 - - - - 3 - -
26. Frank Römer Frankenberg 9 - - 5 - - - - - 4 - - -
26. Janusz Mühlmann Dittersdorf 9 - - - 4 - 2 - - 3 - - -
26. Jakob Walther Chemnitz 9 - - 3 - 1 - - 3 - 2 - -
26. Elia Göckeritz Chemnitz 9 - - 5 - 1 - - - 3 - - -
26. Laszlo Csizmadia Chemnitz 9 - - 4 - 1 - - - 4 - - -
27. Sina Bunge Chemnitz 8 4 - - - - - - - 4 - - -
27. Jelsy Nötzold Chemnitz 8 - - - - 2 2 - - 4 - - -
27. Lilly Schiefer Chemnitz 8 - - - - 2 2 - - 4 - - -
27. Helena Börner Chemnitz 8 4 - - - - - - - 4 - - -
27. Jannes Dressler Chemnitz 8 - - - - 2 2 - - 4 - - -
28. Antonio Jobst Chemnitz 7 - - - - 1 2 - - 3 1 - -
28. Grisu1712 Bietigheim-Bissingen 7 - - 7 - - - - - - - - -
28. Moritz Kinder Chemnitz 7 - - - - 2 2 - 3 - - - -
29. Alexandra Höfner Chemnitz 6 6 - - - - - - - - - - -
29. Leo Langer Chemnitz 6 - - - - - 2 - - 4 - - -
29. Thomas Güra Chemnitz 6 6 - - - - - - - - - - -
29. Lowis Rachowski Chemnitz 6 - - - - 2 - - - 4 - - -
29. Anouk Kräher Chemnitz 6 - - - - 2 - - - 4 - - -
29. Felix Helmert Chemnitz 6 6 - - - - - - - - - - -
29. Lukas Thieme Chemnitz 6 - - - - - - - - - - - 6
29. Hansenfransen Berlin 6 6 - - - - - - - - - - -
29. Felicitas Guera Chemnitz 6 6 - - - - - - - - - - -
29. Ole Reinelt Chemnitz 6 - - - - - - - - 6 - - -
30. Tim Thieme Chemnitz 5 - - - - - - - - - 5 - -
30. Jannik Schulz Chemnitz 5 - - 3 - 2 - - - - - - -
31. Nagy-Balo Andras Budapest 4 - - - - - 4 - - - - - -
31. Marie Sophie Rosz Chemnitz 4 4 - - - - - - - - - - -
31. Adrian Werner Chemnitz 4 - - 4 - - - - - - - - -
31. Silas Arnold Chemnitz 4 - - - - - - - - 4 - - -
31. Jonathan Schlegel Chemnitz 4 - - 4 - - - - - - - - -
31. Flores Zöllner Chemnitz 4 - - - - - - - - 4 - - -
31. Heino Gutschmidt Chemnitz 4 4 - - - - - - - - - - -
31. Klasse BMI3b Zug(CH) 4 - - - - - 4 - - - - - -
32. Rosa-Nora Nebel Chemnitz 3 - - - - - - - - 3 - - -
32. Nino Grahl Chemnitz 3 - - - - 3 - - - - - - -
32. Merlin Fischer Freiburg 3 - - - - - - - - - 3 - -
32. Devon Riesch Chemnitz 3 - - - - 3 - - - - - - -
32. Rafael Seidel Chemnitz 3 - - - - - - - - - 3 - -
32. Antonia Winger Chemnitz 3 - - - - - - - - 3 - - -
33. Oskar Strohbach Chemnitz 2 - - - - - - - - - - 2 -

Auswertung Serie 53 (rote Liste)

Platz Name Ort Summe Aufgabe
  625 626 627 628 629 630 631 632 633 634 635 636
1. Magdalene Chemnitz 89 4 7 5 10 6 8 10 9 6 4 12 8
2. Hans Amstetten 88 4 6 5 10 6 8 10 9 6 4 12 8
2. Paulchen Hunter Heidelberg 88 4 6 5 10 6 8 10 9 6 4 12 8
2. Calvin Crafty Wallenhorst 88 4 6 5 10 6 8 10 9 6 4 12 8
2. Karlludwig Cottbus 88 4 6 5 10 6 8 10 9 6 4 12 8
3. Alexander Wolf Aachen 86 4 6 5 10 6 6 10 9 6 4 12 8
4. Hirvi Bremerhaven 85 4 6 5 10 6 7 10 9 6 4 12 6
4. Reinhold M. Leipzig 85 4 8 5 10 6 3 10 9 6 4 12 8
5. HeLoh Berlin 84 4 6 5 10 6 7 10 6 6 4 12 8
6. Albert A. Plauen 82 4 6 5 10 6 4 10 9 4 4 12 8
7. Günter S. Hennef 80 4 6 5 10 6 - 10 9 6 4 12 8
7. Maximilian Jena 80 4 6 5 10 6 8 10 9 6 4 12 -
8. Helmut Schneider Su-Ro 71 4 6 5 11 6 7 4 9 4 - 12 3
9. Linus-Valentin Lohs Chemnitz 65 4 6 5 10 6 - 10 6 6 4 - 8
9. Birgit Grimmeisen Lahntal 65 - 6 4 10 6 - - 9 6 4 12 8
10. Kurt Schmidt Berlin 62 2 1 4 10 6 3 10 9 3 4 4 6
11. Axel Kaestner Chemnitz 55 4 4 5 10 1 - 8 6 2 4 3 8
11. Gerhard Palme Schwabmünchen 55 - - - - 6 8 6 7 4 4 12 8
12. Reka W. Siegerland 46 4 2 5 8 3 - 8 9 3 4 - -
13. Dana Ingolstadt 27 - - - - - - 8 7 6 - - 6
14. Louisa Melzer Chemnitz 25 4 2 - 8 5 - 6 - - - - -
15. Frank R. Leipzig 24 - - - 10 - - - 6 - - 8 -
15. Laura Jane Abai Chemnitz 24 4 - - 10 - - - 6 - 4 - -
15. Janet A. Chemnitz 24 4 - - 10 - - - 6 - 4 - -
16. Othmar Z. Weimar (Lahn) 17 4 - - - 5 8 - - - - - -
17. Juli Marie Fromm Chemnitz 16 - - - 10 6 - - - - - - -
18. Fynn Jeromin Engelskirchen 14 4 3 2 5 - - - - - - - -
19. Tina Winkler Chemnitz 10 - - - 6 4 - - - - - - -
19. Hannes Jakob Wolf Chemnitz 10 - - - 10 - - - - - - - -
20. Klasse BMI3b Zug(CH) 8 - - - - - 8 - - - - - -
20. StefanFinke112 Wittstock/Dosse 8 - - - - - - - - 4 4 - -
21. Ronja Kempe Chemnitz 7 - - 2 5 - - - - - - - -
21. Marla Seidel Chemnitz 7 - - - - 4 - - - 3 - - -
22. Elisa Falke Chemnitz 6 4 2 - - - - - - - - - -
22. Siegfried Herrmann Greiz 6 - - - - 6 - - - - - - -
23. Rafael Seidel Chemnitz 4 - - - - - - - - - 4 - -
23. Felix Helmert Chemnitz 4 4 - - - - - - - - - - -
23. Marie Reichelt Chemnitz 4 - 1 - - - - - 3 - - - -
23. Ava Seidel Chemnitz 4 - - - - 4 - - - - - - -
23. Marie Sophie Rosz Chemnitz 4 4 - - - - - - - - - - -
23. Hansenfransen Berlin 4 4 - - - - - - - - - - -
23. Grisu1712 Bietigheim-Bissingen 4 - - 4 - - - - - - - - -
23. Heino Gutschmidt Chemnitz 4 4 - - - - - - - - - - -
23. Nina Richter Chemnitz 4 - - - - 4 - - - - - - -
23. Tim Thieme Chemnitz 4 - - - - - - - - - 4 - -
24. Ole Reinelt Chemnitz 3 - - - - - - - - 3 - - -
25. Merlin Fischer Freiburg 2 - - - - - - - - - 2 - -
25. Antonia Winger Chemnitz 2 - - - - - - - - 2 - - -
25. Thomas Güra Chemnitz 2 2 - - - - - - - - - - -
25. Felicitas Guera Chemnitz 2 2 - - - - - - - - - - -
25. Alexandra Höfner Chemnitz 2 2 - - - - - - - - - - -

Es gab genau 100 Teilnehmer insgesamt (nun ja), da ist noch Luft nach oben.
Liste sortiert nach erreichter Gesamtpunktzahl:

Magdalene Chemnitz 172
Paulchen Hunter Heidelberg 171
Calvin Crafty Wallenhorst 171
Karlludwig Cottbus 171
Hans Amstetten 169
Hirvi Bremerhaven 168
Reinhold M. Leipzig 168
Alexander Wolf Aachen 167
HeLoh Berlin 165
Albert A. Plauen 159
Maximilian Jena 155
Günter S. Hennef 155
Linus-Valentin Lohs Chemnitz 146
Helmut Schneider Su-Ro 144
Kurt Schmidt Berlin 141
Axel Kaestner Chemnitz 136
Birgit Grimmeisen Lahntal 136
Reka W. Siegerland 128
Gerhard Palme Schwabmünchen 111
Laura Jane Abai Chemnitz 91
Janet A. Chemnitz 91
Juli Marie Fromm Chemnitz 68
Louisa Melzer Chemnitz 59
Dana Ingolstadt 59
Frank R. Leipzig 42
Fynn Jeromin Engelskirchen 40
Tina Winkler Chemnitz 38
StefanFinke112 Wittstock/Dosse 36
Othmar Z. Weimar (Lahn) 32
Ronja Kempe Chemnitz 28
Siegfried Herrmann Greiz 23
Paula Rauschenbach Chemnitz 23
Paula Anita Beneking Chemnitz 23
Hannes Jakob Wolf Chemnitz 22
Elisa Falke Chemnitz 21
Marla Seidel Chemnitz 20
Maya Melchert Chemnitz 19
Anabel Pötschke Chemnitz 18
Josefin Buttler Chemnitz 17
Marie Reichelt Chemnitz 16
Tabea Raupach Chemnitz 15
Judith Wagner Chemnitz 15
Helene Kübeck Chemnitz 15
Chiara Röder Chemnitz 15
Ava Seidel Chemnitz 15
Nina Richter Chemnitz 14
Quentin Steinbach Chemnitz 13
Lydia Wagner Chemnitz 13
Adrian Amini Chemnitz 12
Pascal Lindner Chemnitz 12
Klasse BMI3b Zug(CH) 12
Niklas Trommer Chemnitz 11
Dorothea Richter Chemnitz 11
Florine Lorenz Chemnitz 11
Yannick Schädlich Chemnitz 11
Jannik Ebermann Chemnitz 11
Tabea Pohle Chemnitz 11
Grisu1712 Bietigheim-Bissingen 11
Felix Helmert Chemnitz 10
Lena Wagler Chemnitz 10
Josie Sandig Chemnitz 10
Charlotte L. Bohley Chemnitz 10
Michelle Oeser Chemnitz 10
Hansenfransen Berlin 10
Frank Römer Frankenberg 9
Ole Reinelt Chemnitz 9
Jakob Walther Chemnitz 9
Laszlo Csizmadia Chemnitz 9
Janusz Mühlmann Dittersdorf 9
Elia Göckeritz Chemnitz 9
Tim Thieme Chemnitz 9
Thomas Güra Chemnitz 8
Felicitas Guera Chemnitz 8
Marie Sophie Rosz Chemnitz 8
Alexandra Höfner Chemnitz 8
Jannes Dressler Chemnitz 8
Helena Börner Chemnitz 8
Lilly Schiefer Chemnitz 8
Sina Bunge Chemnitz 8
Jelsy Nötzold Chemnitz 8
Heino Gutschmidt Chemnitz 8
Rafael Seidel Chemnitz 7
Antonio Jobst Chemnitz 7
Moritz Kinder Chemnitz 7
Lukas Thieme Chemnitz 6
Lowis Rachowski Chemnitz 6
Leo Langer Chemnitz 6
Anouk Kräher Chemnitz 6
Merlin Fischer Freiburg 5
Jannik Schulz Chemnitz 5
Antonia Winger Chemnitz 5
Jonathan Schlegel Chemnitz 4
Nagy-Balo Andras Budapest 4
Adrian Werner Chemnitz 4
Silas Arnold Chemnitz 4
Flores Zöllner Chemnitz 4
Nino Grahl Chemnitz 3
Devon Riesch Chemnitz 3
Rosa-Nora Nebel Chemnitz 3
Oskar Strohbach Chemnitz 2

Serie 52

Serie 52

Hier werden die Aufgaben 613 bis 624 veröffentlicht.

Aufgabe 1

613. Wertungsaufgabe

Logikaufgabe

Karen, Lisas Tante, war in diesem Jahr dran, dass Treffen mit ihren Freundinnen aus ihrem ehemaligen Karnelvalsverein in Chemnitz zu organisieren. Die 5 (Anne, Caro, Grit, Helene und Victoria) waren in Jahren 1998, 1999, 2001, 2002 bzw. 2003 aus Chemnitz weggezogen. Sie wohnten jetzt in Berlin, Coburg, Magdeburg, Nürnberg bzw. Riesa. Die Freundinnen sind 33, 34, 36, 37 bzw. 39 Jahre alt. Karen war ziemlich aufgeregt, so dass sie Lisa nur ein paar Informationen berichtete.

  1. Die Freundin aus Nürnberg ist älter als Helene.
  2. Die 36-jährige Victoria zog nicht 2002 aus Chemnitz weg.
  3. Grit, die jetzt in Riesa wohnt, ist älter als Anne (die nicht 1998 Chemnitz verließ).
  4. Die jüngste Freundin zog 1999 aus Chemnitz weg.
  5. Die Zweitälteste zog eher weg als die Freundin, die jetzt in Berlin wohnt. Zwischen den beiden zog mindestens noch eine Freundin weg.
  6. Die Freundin aus Coburg ist älter als Caro, zog aber ein Jahr eher weg als Caro.
  7. Helene war die letzte, die weg zog.

Wann zog wer wohin und wie alt sind die Freundinnen? 6 blaue Punkte

Jahr

Name

Ort

Alter

1998

     

1999

     

2001

     

2002

     

2003

     

Lisas Tante konnte sich noch gut erinnern, dass sie 1997 in der Jury des Karnevalvereins saß und ihre 5 Freundinnen, die Plätze 1 bis 5 belegten. Mit den Kostümen (Teufel, Halloweenkürbis, Mondprinz, Maulwurf bzw. Windhund) hatten sie sich viel Mühe gegeben. Auch Preise gab es (Regenschirm, Buch, USB-Stick, Kette bzw. einen Schal).

  1. Victoria freute sich über das Buch, denn sie las einfach sehr gerne.
  2. Das Mädchen auf Platz 4, nicht der Teufel, bekam den Regenschirm.
  3. Grit wurde Dritte.
  4. Helene war nicht als Halloweenkürbis verkleidet.
  5. Dem Maulwurf wurde die Kette umgehängt.
  6. Annes Platzierung lag direkt hinter Caro, die als Mondprinz auftrat.
  7. Den USB-Stick bekam nicht der Teufel.
  8. Der zweite Platz ging nicht an den Halloweenkürbis.
  9. Helene war einen Platz schlechter, wie das Mädchen mit der Kette.

Wer hatte welches Kostüm bekam für seine Platzierung welchen Preis? 6 rote Punkte-Diagramm

Name

Kostüm

Platz

Preis

Anne

     

Caro

     

Grit

     

Helene

     

Victoria

     

--> Vorlage zum Ausfüllen <--

 Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, gleiche Ziffer, verschiedene Symbole verschiedene Ziffern.  © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

613 Ntoepfe

Termin der Abgabe 12.09.2019. Ultimo termine di scadenza per l´invio è il 12.09.2019. Deadline for solution is the 12th. September 2019. Date limite pour la solution 12.09.2019. Soluciones hasta el 12.09.2019. Beadási határidő 2019.09.12.

hun

Logikai feladat

Karen, Lisa nagynénje, ebben az évben azzal foglalatoskodott, hogy az egykori chemnitzi karneváli egyesülethez tartozó barátnők találkozóját összehozza. Ők öten (Anne, Caro, Grit, Helene és Victoria) 1998-ban, 1999-ben, 2001-ben, 2002-ben továbbá 2003-ban költöztek el Chemnitzből. Most Berlinben, Coburgban, Magdeburgban, Nürnbegben és Riesában laknak. A barátnők 33,34,36,37 és 39 évesek. Karen eléggé izgult, így Lisának csak pár adatot mesélt el.

  1. A nürnbergi barátnő idősebb, mint Helene.
  2. 2.A 36 éves Victoria nem 2002-ben költözött el Chemnitzből.
  3. Grit, aki most Riesában lakik, idősebb, mint Anne (aki nem 1998-ban hagyta el Chemnitzet).
  4. A legfiatalabb barátnő 1999-ben költözött el.
  5. A második legidősebb barátnő hamarabb költözött el, mint aki most Berlinben lakik. Kettejük közt legalább még egy barátnő elköltözött.
  6. A coburgi barátnő idősebb, mint Caro, de egy évvel korábban elköltözött, mint Caro.
  7. Helene volt az utolsó, aki elköltözött.

Mikor, ki és hová költözött a milyen idős barátnők közül? 6 kék pont

Lisa nagynénje még pontosan emlékezett, hogy ő 1997-ben a zsűri tagjai közt volt és az 5 barátnője 1-től 5-ig helyezésében bíráskodott. A jelmezekkel (ördög, töklámpás, holdherceg, kisvakond és szélkutya) nagyon sokat dolgoztak. Díjazás is (esernyő, könyv, USB-Stick, lánc és egy sál) járt érte.

  1. Victoria nagyon örült a könyvnek, mert nagyon szívesen olvasott.
  2. A negyedik helyezett lány, aki nem ördögnek öltözött, esernyőt kapott.
  3. Gritt harmadik lett.
  4. Helene nem töklámpásnak öltözött.
  5. A kisvakond a láncot akasztotta magára.
  6. Anne helyezése közvetlenül Caro mögött volt, aki mint Holdherceg lépett fel.
  7. Az USB-t nem az ördög kapta.
  8. A második helyezett nem a töklámpás lett.
  9. Helene egy helyezéssel gyengébb volt, mint a lány, aki a láncot kapta.

Kinek, melyik jelmeze volt és melyik helyezést érte el, milyen díjazással? 6 piros pont

A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket.  ©HRGauern[at]@t-online.de

613 Ntoepfe

fr

Exercice de logique

Karen, la tante de Lisa, devait organiser cette année la réunion avec ses amis de son ancien club de carnaval à Chemnitz. Les 5 (Anne, Caro, Grit, Helene et Victoria) ont quitté Chemnitz en 1998, 1999, 2001, 2002 et 2003, respectivement. Ils vivaient maintenant à Berlin, Coburg, Magdebourg, Nuremberg et Riesa.

Les amis ont 33, 34, 36, 37 et 39 ans. Karen était très excitée, alors elle a juste donné quelques informations à Lisa.

L'amie de Nuremberg est plus âgée qu'Hélène.

Victoria, âgée de 36 ans, n'a pas déménagée de Chemnitz en 2002.

Grit, qui vit maintenant à Riesa, est plus âgé qu'Anne (qui n'a pas quitté Chemnitz en 1998).

Le plus jeune amie a quitté Chemnitz en 1999.

Le deuxième aîné s'est éloigné plutôt que l'amie, qui vit maintenant à Berlin. Au moins une amie est parti entre les deux.

L'amie de Coburg est plus âgée que Caro, mais a déménagée un an plus tôt que Caro.

Hélène fut la dernière à déménager.

Quand a qui déménagé et quel âge ont les amies? 6 points bleus

Année

Nom

Ville

Age

1998

     

1999

     

2001

     

2002

     

2003

     

La tante de Lisa se souvenait encore qu'en 1997, elle était membre du jury du club de carnaval et de ses 5 amies occupant les places 1 à 5. Avec les costumes (diable, citrouille d'Halloween, prince de lune, taupe et lévrier), ils avaient eu beaucoup de peine. Il y avait aussi des prix (parapluie, livre, clé USB, chaîne et foulard).

Victoria était contente du livre parce qu'elle adorait lire.

La fille classée 4eme, pas déguisé en diable, a obtenu le parapluie.

Grit a eu la troisième place.

Hélène n'était pas déguisée en citrouille d'Halloween.

La taupe a reçu la chaîne.

Le placement d'Anne était directement derrière Caro, qui été déguisé en prince de lune.

Le diable n'a pas obtenu la clé USB.

La deuxième place n'est pas allée à la citrouille d'Halloween.

Hélène était classé une place derrière la fille avec la chaîne.

Qui avait quel costume et a obtenu quel prix pour son placement? 6 points rouges

Nom

Costume

Placement

Prix

Anne

     

Caro

     

Grit

     

Helene

     

Victoria

     

La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus.
Règle pour l’énigme: Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

613 Ntoepfe

sp

A Karen, la tía de Lisa, se lo tocó a ella este año de organizar un encuentro con sus amigas de la asociación carnavalesca en Chemnitz. Los 5 (Anne, Caro, Grit, Helene y Victoria) se habían  mudado de Chemnitz en los años 1998, 1999, 2001, 2002 y 2003. Ahora viven en Berlín, Coburg, Magdeburg, Nürnberg y Riesa. Las amigas tienen 33, 34, 36, 37 y 39 años de edad. Como era bastante nerviosa, Karen la dio solo poca información a Lisa.

La amiga de Nürnberg es más vieja que Helene.

Victoria, con una edad de 36 años, no se mudó de Chemnitz en 2002.

Grit, quien ahora vive en Riesa, es más vieja que Anne (que no se fue de Chemnitz en 1998).

La amiga más joven cambió de casa (fuera de Chemnitz) en 1999.

La segunda en edad se mudó más temprano que la amiga que ahora vive en Berlín. Entre estas dos al menos una amiga se mudó.

La amiga de Coburg es más vieja que Caro, pero se mudó un año más temprano que Caro.

Helene era la última que cambió de domicilio.

¿Cuándo se mudó quién y cuántos años tienen las amigas? (6 puntos azules)

año         

nombre

      lugar

      edad

1998

     

1999

     

2001

     

2002

     

2003

     

La tía de Lisa podía recordar bien que en el año 1997 era jurada de la asociación carnavalesca y sus amigas ocupaban los primeros puestos (1 a 5). Con sus trajes (diablo, calabaza de Halloween,   Príncipe de la luna, topo y galgo) se habían esforzado mucho. Los premios que obtuvieron eran un paraguas, un libro, una memoria (USB) externa, un collar y una bufanda.

Victoria se alegró por el libro, porque leer le gustó mucho.

La chica del cuarto puesto, que no era el diablo, recibió el paraguas.

Grit ocupó el tercio puesto.

Helene no estaba disfrazado como calabaza de Halloween.

Al topo le pusieron el collar.

Anne ocupó el puesto directamente detrás de Caro, quien apareció como Príncipe de la luna.

La memoria externa no fue recibido del diablo.

La calabaza de Halloween no ocupó al segundo puesto.

Helene era un puesto peor que la chica con el collar.

¿Quién tenía cuál traje y obtuvo cuál premio para su clasificación? (6 puntos rojos)

nombre     

traje

     clasificación

    premio

Anne

     

Caro

     

Grit

     

Helene

     

Victoria

     

Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras.  ©HRGauern[at]@t-online.de

613 Ntoepfe

en

This year it was Karen’s turn (Lisa’s aunt) to organize the annual meeting with her friends from the carnival club. The 5 girls (Anne, Caro, Grit, Helene and Victoria) had left Chemnitz in the years 1998, 1999, 2001, 2002 and 2003. They now lived in Berlin, Coburg, Magdeburg, Nürnberg and Riesa. The friends are 33, 34, 36, 37 and 39 years old. Karen was so excited that she only gave Lisa little information on the phone.

1st The friend from Nürnberg is older than Helene.

2nd The 36 year old Victoria didn’t leave Chemnitz in 2002.

3rd Grit, who now lives in Riesa, is older than Anne. Anne didn’t leave Chemnitz in the year 1998.

4th The younger friend left Chemnitz in 1999.

5th The second oldest friend moved away before another friend, who lives in Berlin. Between those two at least one friend moved away.

6th The friend from Coburg is older than Caro, but moved away one year earlier than Caro.

7th Helene was the last one who moved away.

At which time did the friends leave Chemnitz? Where did the move to? How old are the friends?

6 blue points

year

name

place

age

1998

     

1999

     

2001

     

2002

     

2003

     

Lisa`s aunt could remember perfectly that she was in the jury of the carnival club in 1997. Her friends got the places 1-5. For their costumes (devil, Halloween pumpkin, moon prince, mole and greyhound) they had been working very long. There had been prizes too (umbrella, book, USB-stick, neckless, scarf). This is what she can remember.

1st Victoria was happy when she got the book, because she liked reading very much.

2nd The girl who became 4th got the umbrella. She was not dressed as the devil.

3rd Grit became 3rd.

4th Helene was not dressed as Halloween pumpkin.

5th The mole got the neckless.<