This week's maths problem

Problem of the week

exercice de maths de la semaine, math problem of the week, problema di matematica della settimana, सप्ताह के गणित समस्या, математическая задача недели, Ejercicio de matemáticas semanal, 今週の数学問題, בעיה מתמטית של השבוע, مشكلة الرياضيات الأسبوع, 这个周的数学问题, Haftanın matematik problemi, temporäre Problem vun der Woch, μαθηματικό πρόβλημα της εβδομάδας, math tatizo la wiki,

On Friday of each week we will post a new maths challenge.
You may submit your solution by the following Thursday.
Each problem contains two different levels of difficulty. You will be awarded from 2 to 12 points for a full answer.
Each series contains 12 problems before the stage winner is determined.
Your score will be published here.

In each series we will give away 3 books as prices. The prices will be drawn by lot among the best ten participants of the series. The books are kindly sponsored by Buchdienst Rattei of Chemnitz.

Suggestions for problems are welcome.

Deadline is 23nd of January 2020.


German version - Italian version - French version - Spanish version  Hungarian Version

 

Series 53

problem 628

628„Das Fünfeck, welches Opa mit brachte hat dich wohl zu deiner Konstruktion angeregt?“; fragte Bernd seine Schwester. „Das stimmt.“ Begonnen wird mit dem dunkelblauen Fünfeck – regelmäßig wie alle sichtbaren Fünfecke. Anschließend die „rötlichen“ Fünfecke. Die Strecke AB wird verlängert, so dass das Dreieck OPM gezeichnet werden kann. Nun das grüne Fünfeck konstruieren. Wie das hellblaue Fünfeck entsteht, kann man der Zeichnung entnehmen.
Wie groß sind die Innenwinkel des Dreiecks OPM – nicht messen, ausrechnen? 4 blaue Punkte. Wer möchte, kann alle farbigen Teile des Bildes ausschneiden und wenn man es schafft, lässt sich, unter weglassen des dunkelblauen Fünfecks, wieder ein Fünfeck legen.
Ein „Foto“ als Beweis bringt noch einmal 2 blaue Punkte.
Wie groß ist der Flächeninhalt aller Teilflächen des großen hellblauen Fünfecks, die nicht von anderen Fünfecken verdeckt werden, wenn der Flächeninhalt des dunkelblauen Fünfecks 20 cm² beträgt? 10 rote Punkte.
Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

628 stocknaegel

Termin der Abgabe 23.01.2020. Ultimo termine di scadenza per l´invio è il 23.01.1920. Deadline for solution is the 23th. January 2019. Date limite pour la solution 23.01.2020. Soluciones hasta el 23.01.2020. Beadási határidő 2020.01.23

hun

628

„Az az ötszög, amit nagyapa hozott, ösztönzött téged a szerkesztésedhez?” – kérdezte Bernd a nővérét. „Így van.” A sötétkék ötszöggel kezdtem, egyenlő oldalú, mint minden itt látható ötszög. A „vöröses” ötszögekkel folytattam. Az AB szakaszt meghosszabbítottam, hogy az OPM háromszög kirajzolódjon. Már csak a zöld ötszöget kell megszerkeszteni. Azt hogy a világoskék ötszög hogyan jön létre, láthatjuk az ábrán. Mekkorák a belső szögei az OPM háromszögnek, nem mérve, kiszámolva? 4 kék pont
Aki szeretné, kivághatja az összes színes részét az ábrának, és ha tudja, a sötétkék ötszög elhagyásával ismét egy ötszöget alkothat. Egy bizonyító fotó még 2 kék pontot ér.
Mekkora a felülete nagy világoskék ötszög összes olyan részfelületének, amelyek más ötszögtől nem fedettek, ha a sötétkék ötszög felülete 20 cm²? 10 piros pont
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. ©HRGauern[at]@t-online.de

628 stocknaegel

fr

628

"Le pentagone que grand-père a apporté t'as probablement inspiré pour faire cette construction?", Bernd a demandé à sa sœur. "C'est vrai." Cela commence par le pentagone bleu foncé - régulière comme tous les pentagones visibles. Puis les pentagones "rougeâtres". La distance AB est allongée pour que le triangle OPM puisse être tracé, puis le pentagone vert. La création du pentagone bleu clair peut être vu dans le dessin.
Quelle est la taille des angles intérieurs du triangle OPM - ne pas mesurer, mais calculer? 4 points bleus.
Qui veut, peut découper toutes les parties colorées de l'image et les placer d'une telle manière de construire à nouveau un pentagone, mais sans l'utilisation du pentagone bleu foncé.
Une "photo" comme preuve apporte 2 points bleus supplémentaires.
Quelle est l'aire de toutes les zones partielles du grand pentagone bleu clair qui ne sont pas couvertes par d'autres pentagones si l'aire du pentagone bleu foncé est de 20 cm²? 10 points rouges.
La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

628 stocknaegel

sp

628

„¿El pentágono del abuelo te ha inspirado a crear esta construcción?“, le preguntó Bernd a su hermana. „Es verdad…“
Se empieza con el pentágono en azul oscuro - regular como todos los pentágonos visibles. Posteriormente los pentágonos rojizos. Se prolonga el segmento rectilíneo, para que se pueda construir el triángulo OPM. Ahora, trazar el pentágono verde. En el dibujo se puede ver como se construye el pentágono azul claro. ¿De qué tamaño son los ángulos internos del triángulo OPM - no medir, sino calcular? - 4 puntos azules. Si tiene ganas, se puede recortar todas las partes coloridas del imagen y poner otro pentágono sin el pentágono de azul oscuro. Una foto como prueba trae  2 puntos azules más.
¿Cuánto mide el área de todas las partes del gran pentágono azul claro que no están cubiertos de otros pentágonos, si el área del pentágono azul oscuro está 20 cm²? 10 puntos rojos.
Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

628 stocknaegel

en

628

“Did the pentagon grandpa brought to you earlier inspire you to do a new construction? “; Bernd asked his sister. “Yes, that’s true.“ We start with a dark blue pentagon – regular as all visible pentagons. Afterwards we add the ‘reddish‘ pentagon. The line segment AB gets extended so the triangle OPM can be drawn. Now we construct the green pentagon. To find out about constructing the bright blue pentagon just look at the sketch on the right side.
How big are the interior angles of the triangle OPM – not measured but calculated? - 4 blue points. You can cut out all coloured parts of the picture. If that is possible, you can lay another pentagon, without using the dark blue pentagon. A photo as proof gets you another 2 blue points.
How big is the area of all subareas of the bright blue pentagon, which is not covered by other pentagons, if the area of the dark blue pentagon is 20cm²? – 10 red points.
Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. ©HRGauern[at]@t-online.de

628 stocknaegel

 


Send your solutions to Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!, if your answer contains attachments.

For text versions you can also use this form

--> here <--

Please give your full name so your points can be added to the score. If you would like to receive our weekly maths problem automatically you can

--> subscribe to our newsletter <-- .

Presently this newsletter is received by more than 1900 subscibers.

You can also send a paper copy of your solution as long as it is postmarked on or before the deadline.
adress:
Thomas Jahre
Stollberger Strasse 25
09119 Chemnitz
Germany


Links:

http://www.wurzel.org/

https://www.facebook.com/ArchimedesLab

http://people.missouristate.edu/lesreid/potw.html

post address:

Thomas Jahre
Chemnitzer Schulmodell
Stollberger Straße 25
09119 Chemnitz
Deutschland/Germany
QR-Code for this site
qrcodewochen

Kommentare   

0 #4 Jerry 2018-05-09 20:16
I'm gone to inform my little brother, that he should also go to
see this weblog on regular basis to obtain updated from
most up-to-date reports.
Zitieren
0 #3 unblocked games 2017-09-25 06:37
It is not my first time to pay a visit this web page, i am browsing this website dailly and
obtain good information from here every day.
Zitieren
0 #2 Quentin 2017-08-20 14:31
Hey Mike, got a question for you concerning my
goals.
Zitieren
+3 #1 Cora 2014-11-13 23:03
Hi therde to all, the contents existing at this site are truly remarkable for people knowledge, well, keep up the
nice woek fellows.
Zitieren

Kommentar schreiben


Sicherheitscode
Aktualisieren