Serie 65

Beitragsseiten

Aufgabe 8

776. Wertungsaufgabe

deu

„Wusstest du, dass 28 eine zauberhafte Zahl ist?“, fragte Mike. Bernd sah ihn fragend an.
„Nun, ich habe mir alle Teiler der Zahl notiert. 1, 2, 4, 7, 14 und die 28 selbst. Die Kehrwerte dieser Teiler sind 1/1, ½, ¼, 1/7, 1/14 und 1/28. Wenn ich diese Kehrwerte addiere, ergibt sich als Ergebnis genau die Zahl 2.“
Nimmt man die Teiler von anderen Zahlen, so ist das Ergebnis der Addition nicht automatisch 2. Für die 15 ergibt sich ein Wert, der kleiner als 2 ist. Bei der Ausgangszahl 12 ist das Ergebnis größer als 2.
Welche Zahl (kleiner als 28) hat ebenfalls die zauberhafte Eigenschaft? 2 blaue Punkte (Sollte es mehrere geben, so reicht ein Beispiel.)
Für das Finden einer zauberhaften Zahl, die größer als 28 ist, gibt es 4 rote Punkte. (Wenn es überhaupt eine gibt.)

https://www.schulmodell.eu/aufgabe-der-woche.html

Termin der Abgabe 22.02.2024. Limtago por sendi viajn solvojn estas la 22-a de februaro 2024. Срок сдачи 22.02.2024. Ultimo termine di scadenza per l´invio è il 22.02.2024. Deadline for solution is the 22th. February 2024. Date limite pour la solution 22.02.2024. Soluciones hasta el 22.02.2024. Beadási határidő 2024.02.22 截止日期: 2024.02.22 – 请用徳语或英语回答  Διορία παράδοσης λύσης 22/02/2024  Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.

الموعد النهائي للتسليم هو 22/02/2024

يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.

esperanto:

„Ĉu vi scias ke 28 estas mirinda nombro?“, demandis Mike. Bernd scivoleme rigardis lin. „Do, mi notis ĉiujn divizorojn de la nombro. 1, 2, 4, 7, 14 kaj 28 mem. La inversoj de ili estas 1/1, ½, ¼, 1/7, 1/14 kaj 1/28. Se mi kalkulas la sumon de la inversoj mi ricevas la nombron 2.“
Se oni prenas la divizorojn de aliaj nombroj, la rezulto de la adicio ne ĉiam estas 2. Por 15 la rezulto estas pli malgranda ol 2; por la nombro 12 la rezulto estas pli granda ol 2.
Kiu nombro (pli malgranda ol 28) same havas la mirindan econ? 2 bluaj poentoj (Se ekzistas kelkaj, sufiĉas unu ekzemplo.)
Por trovado de mirinda nombro, kiu estas pli granda ol 28 vi ricevos 4 ruĝajn poentojn. (Se entute ekzistas tia nombro.)

Limtago por sendi viajn solvojn estas la 22-a de februaro 2024. La solvojn skribu prefere en la germana, angla aŭ franca.

https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html

arabisch-التمرين الإسبوعي:

 

قال مايك. "هل تعلم أن الرقم 28 هو رقم سحري؟"
نظر إليه بيرند بتعجب.

"حسنًا، انظر لقد كتبت جميع قواسم الرقم 28 التي هي 1، 2، 4، 7، 14 والعدد 28 نفسه.
إن مقلوب هذه القواسم هو 1/1 ، 1/2 ، 1/4 ، 1/7 ، 1/14 ، 1/28 .
إذا قمت بجمع هذه الكسور معًا، فإن النتيجة هي الرقم 2 بالضبط.
إن هذه الميزة السحرية لا تنطبق على جميع الأرقام.

مثلا قواسم الرقم 15 ، إن حاصل جمع مقلوب قواسمه أصغر من 2.
مثال آخر: الرقم 12 ، إن حاصل جمع مقلوب قواسمه أكبر من 2."
المطلوب:
ما هو الرقم الأصغر من 28 الذي يملك هذه الخاصية السحرية أيضًا ؟ نقطتان زرقاء ( رقم واحد يكفي ، في حال كان هناك أكثر من رقم ).
ما هو الرقم الأكبر من 28 الذي يملك هذه الخاصية السحرية أيضًا ؟ أربعة نقاط حمراء ( رقم واحد يكفي ، في حال كان هناك أكثر من رقم ).

الموعد النهائي للتسليم هو /0822/02/2024

يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.

 

https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html

griechisch:

"Το ήξερες ότι το 28 είναι ένας μαγικός αριθμός;" ρώτησε ο Mike. Ο Bernd τον κοίταξε διερωτώμενος.
"Λοιπόν, έγραψα όλους τους διαιρέτες του αριθμού. Το 1, το 2, το 4, το 7, το 14 και το ίδιο το 28. Τα αντίστροφα αυτών των διαιρετών είναι 1/1, ½, ¼, 1/7, 1/14 και 1/28. Αν προσθέσω αυτά τα αντίστροφα μαζί, το αποτέλεσμα είναι ακριβώς ο αριθμός 2".
Αν πάρετε τους διαιρέτες άλλων αριθμών, το αποτέλεσμα της πρόσθεσης δεν είναι αυτόματα το 2. Για το 15, το αποτέλεσμα είναι μια τιμή που είναι μικρότερη από το 2. Για τον αρχικό αριθμό 12, το αποτέλεσμα είναι μεγαλύτερο του 2.
Ποιος αριθμός (μικρότερος από το 28) έχει επίσης τη μαγική ιδιότητα; 2 μπλε κουκκίδες (Αν υπάρχουν περισσότερες από μία, ένα παράδειγμα είναι αρκετό).
Υπάρχουν 4 κόκκινοι κουκκίδες για την εύρεση ενός μαγικού αριθμού μεγαλύτερου από το 28. (Εάν υπάρχει ένας τέτοιος.)

Διορία παράδοσης λύσης 22/02/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.

https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html

chin

第776题

“你知道28是一个神奇的数字吗?” 迈克问道。
伯恩德很茫然地看着他。
“我写出了这个数字的所有约数: 1、2、4、7、14和28本身。这些约数的倒数分别是: 1/1、1/2、1/4、1/7、1/14 和 1/28。 如果我把这些倒数加在一起,结果正好是2。”
如果取其他数字的约数,约数倒数相加的结果不都是2。例如15,相加结果是小于2; 如果是12,则结果大于2。
在小于28的数字中,哪个数字也具有类似的神奇属性? 2个蓝点 (如果有多个,举一个例子就够了)
找到一个大于28的神奇数字。 4个红点 (如果有的话)

截止日期: 2024.02.22. – 请用徳语或英语回答

https://www.schulmodell.eu/2952-woch-chin.html

rus

«Ты знал, что 28 — магическое число?» — спросил Майк. Бернд вопросительно посмотрел на него.
«Ну, я записал все делители числа. 1, 2, 4, 7, 14 и само число 28. Обратные значения этих делителей равны 1/1, ½, ¼, 1/7, 1/14 и 1/28. Если я сложу эти обратные величины вместе, в результате получится ровно число 2».
Если взять делители других чисел, результат сложения не будет автоматически равен 2. Для 15 результатом будет величина меньше 2. Если исходное число равно 12, результат больше 2.
Какое число (меньше 28) также обладает магическим свойством? 2 синих очка (если их несколько, достаточно одной).
Нахождение магического числа больше 28 даёт 4 красных очка. (если оно вообще существует).

https://www.schulmodell.eu/2910-%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B0-%D0%BD%D0%B5%D0%B4%D0%B5%D0%BB%D0%B8-mathematics.html

hun

 "Tudtad, hogy a 28 egy mágikus szám?" – kérdezte Mike. Bernd kérdően nézett rá.
- Nos, felírtam a szám összes osztóját. 1, 2, 4, 7, 14 és a 28. Ezeknek az osztóknak a reciproka 1/1, 1/2, 1/4, 1/7, 1/14 és 1/28. Ha összeadom ezeket a reciprokokat, az eredmény pontosan a 2-es szám."
Ha más számok osztóit vesszük, az összeadás eredménye nem automatikusan 2. A 15 esetében ez 2-nél kisebb értéket eredményez.  A 12-es szám esetében az eredmény nagyobb, mint 2.
Melyik szám (28-nál kisebb) rendelkezik ezzel a mágikus tulajdonsággal? 2 kék pont (Ha több van, elegendő egy példa.)
Ha 28-nál nagyobb mágikus számot találsz, az 4 piros pontot ér. (Ha van egyáltalán ilyen.)

https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html

frz

"Tu savais que 28 est un nombre magique ?", a demandé Mike. Bernd le regarda d'un air interrogateur.
« Eh bien, j'ai noté tous les diviseurs du nombre. 1, 2, 4, 7, 14 et le 28 lui-même. Les réciproques de ces diviseurs sont 1/1, ½, ¼, 1/7, 1/14 et 1/28. Si j’additionne ces réciproques, le résultat est exactement le nombre 2. »
Si on prend les diviseurs d'autres nombres, le résultat de l'addition n'est pas automatiquement 2. Pour 15, le résultat est une valeur inférieure à 2. Si le nombre initial est 12, le résultat est supérieur à 2.
Quel nombre (inférieur à 28) possède également la propriété magique ? 2 points bleus (S'il y en a plusieurs, un exemple suffit.)
Il y aura 4 points rouges pour trouver un nombre magique supérieur à 28. (S'il y en a un.)

https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html

esp

“¿Sabías que 28 es un número mágico?”, preguntó Mike. Bernd le miró inquisitivamente.
“Bueno, escribí todos los divisores del número. 1, 2, 4, 7, 14 y el propio 28. Los recíprocos de estos divisores son 1/1, ½, ¼, 1/7, 1/14 y 1/28. Si sumo estos recíprocos, el resultado es exactamente el número 2.” 
Si se toman los divisores de otros números, el resultado de la suma no es automáticamente 2. Para 15, el resultado es un valor menor que 2. Para el número inicial 12, el resultado es mayor que 2.
¿Qué número (menor que 28) también tiene la propiedad mágica? 2 puntos azules (Si hay más de uno, basta con un ejemplo).
Encontrar un número mágico mayor que 28 rinde 4 puntos rojos. (Si hay alguno.)

https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html

en

"Did you know that 28 is a magic number?" asked Mike. Bernd looked at him questioningly.
"Well, I wrote down all the divisors of the number. 1, 2, 4, 7, 14 and 28 itself. The reciprocals of these divisors are 1/1, ½, ¼, 1/7, 1/14 and 1/28. If I add these reciprocals together, the result is exactly the number 2."
If you take the divisors of other numbers, the result of the addition is not automatically 2. For 15, the result is a value that is less than 2. For the starting number 12, the result is greater than 2.
Which number (less than 28) also has the magical property? 2 blue points (If there is more than one, one example is enough.)
Finding a magic number greater than 28 is worth 4 red points. (If there is one at all.)

Deadline for solution is the 22th. February 2024.

https://www.schulmodell.eu/1453-this-weeks-maths-problem.html

it

"Sapevi che 28 è un numero magico?", chiese Mike. Bernd lo guardò perplesso.
"Bene, ho annotato tutti i divisori del numero. 1, 2, 4, 7, 14 e il 28 stesso. I reciproci di questi divisori sono 1/1, 1⁄2, 1⁄4, 1/7, 1/14 e 1/28. Se sommo questi reciproci, ottengo esattamente il numero 2 come risultato."
Con altre cifre, l'addizione dei reciproci dei divisori non dà necessariamente 2.
Per il numero 15, ad esempio, si ottiene un valore inferiore a 2. Per il numero iniziale 12, il risultato è maggiore di 2.
Quale numero (inferiore a 28) ha anche questa proprietà magica? 2 punti blu (Se ce ne sono diversi, basta un esempio.)
Per un esempio di un numero magico maggiore di 28, ci sono 4 punti rossi. (Se ce ne sono.)"

https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html

 Lösung/solution/soluzione/résultat/Решение:

 Mit Hilfe von Programmen oder auch Kalkulationstabellen, aber auch "zu Fuß", so im Fall blau findet man die Zahl 6 als Kandiadat ganz schnell. Teiler sind 1, 2, 3 und 6. 1/1 + 1/2 + 1/3 + 1/6 = 2.
Vielen Einsendern ist es schon hier aufgefallen, dass die zauberhaften Zahlen eigentlich als vollkommene bzw. perfekte Zahlen heißen. Unter dem Punkt 3.1. findet man die passenden Hinweise. https://de.wikipedia.org/wiki/Vollkommene_Zahl

Die nächste Zahl (> 28) ist 496. Hier kann man das austesten: https://www.schulmodell.eu/167-reiche-zahlen.html
Primzahlen und andere Zahlen werden arm genannt, weil die Summe der Kehrwerte der echten Teiler kleiner ist als 2 oder eben die Summe der echten Teiler kleiner als die Ausgangszahl ist.
Zahlen heißen reich, wenn die Summe der Kehrwerte der echten Teiler größer ist als 2 oder eben die Summe der echten Teiler größer als die Ausgangszahl ist. Die kleinste reiche Zahl ist die 12.
Nicht bekannt ist (mir nicht bekannt), ob es einen maximalen Werte bei der Summe der Kehrwerte bei reichen Zahlen gibt.