Serie 65

Beitragsseiten

Aufgabe 6

774. Wertungsaufgabe

deu

„Du hast aber viele Zahlen auf deinem Zettel stehen“, sagte Maria zu ihrem Bruder Bernd.
„Stimmt. Ich suche Primzahlen, die ich quadriere, aber auch in die dritte Potenz setze.
Dabei suche ich nach Primzahlen, bei denen die Ergebnisse meiner Rechnung jeweils aus verschiedenen Ziffern bestehen – also keine Ziffer doppelt vorkommt.“ „ Zeig mir mal ein Beispiel.“
„Es geht mit der 13: 13² = 169 – alle Ziffern verschieden 13³= 2197 – auch hier sind alle Ziffern des Ergebnisses verschieden. Die 23 gehört nicht dazu, denn 23³ = 12167 – das Ergebnis enthält zweimal die Ziffer 1.“ „Alles klar.“
Es sind alle Primzahlen zu finden, die größer sind als 13 und kleiner als 50, auf die Bernds Bedingungen zutreffen. 6 blaue Punkte.
Es ist eine passende Primzahl zu finden, die größer ist als 60. (Gern auch mehrere.) Könnte es sein, dass es unendlich viele solcher Primzahlen gibt? (2 + 4) rote Punkte.

https://www.schulmodell.eu/aufgabe-der-woche.html

Termin der Abgabe 01.02.2024. Limtago por sendi viajn solvojn estas la 01-a de februaro 2024. Срок сдачи 01.02.2024. Ultimo termine di scadenza per l´invio è il 01.02.2024. Deadline for solution is the 1th. February 2024. Date limite pour la solution 01.02.2024. Soluciones hasta el 01.02.2024. Beadási határidő 2024.02.01 截止日期: 2024.02.01 – 请用徳语或英语回答  Διορία παράδοσης λύσης 01/02/2024  Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.

الموعد النهائي للتسليم هو 01/02/2024

يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.

esperanto:

„Ho, vi havas multajn nombrojn sur via papereto“, diris Maria al sia frato Bernd,
„Ĝuste, mi serĉas primnombrojn, kiujn mi kvadratigas kaj ankaŭ levi ilin al la tria potenco. Mi serĉas primnombrojn ĉe kiuj la rezoultoj de mia kalkulado konsistas el malsamaj ciferoj — neniu cifero aperas dufoje.“ „Montru al mi ekzemplon.“
„Eblas per 13: 132 = 169 — ĉiuj ciferoj estas diversaj 133 = 2197 — ankaŭ ĉi tie ĉiuj ciferoj estas malsamaj. La nombro 23 ne havas tiun econ, ĉar 233 = 12167 — la rezulto enhavas dufoje la ciferon 1.“ „Nun ĉio estas klara.“
Trovu ĉiujn primnombrojn, kiuj estas pli grandaj ol 13 kaj pli malgrandaj ol 50 kaj kongruas al tiu postulo. 6 bluaj poentoj
Trovu unu taŭgan primnombron, kiu estas pli granda ol 60 (volonte ankaŭ pli ol unu primnombro). Ĉu eblas ke ekzistas senfine multaj tiaj primnombroj? (2+4) ruĝaj poentoj.

Limtago por sendi viajn solvojn estas la 01-a de februaro 2024. La solvojn skribu prefere en la germana, angla aŭ franca.

https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html

arabisch-التمرين الإسبوعي:

 

"صحيح. أنا أبحث عن الأعداد الأولية التي يتكون مربعها أو مكعبها من أرقام مختلفة . "

قالت ماريا: " أعطني مثالاً. "

أجاب بيرند

" العدد 13:

13² = 169

13³= 2197

إن مربع العدد 13 هو 169 يتكون من ثلاثة أرقام مختلفة 9 و 6 و 1 .

إن مكعب العدد 13 هو 2197 يتكون من أربعة أرقام مختلفة 7 و 9 و 1و 2 .

العدد 23 :

23³ = 12167

إن مكعب العدد 23 هو 12167 يتكون من أربعة أرقام مختلفة 7 و 6 و 1و 2 .

لاحظي أن الرقم 1 مكرر مرتين.

إن العدد 23 لا ينتمي إلى مجموعة الأرقام التي أبحث عنها. "

" مفهوم " أجابت ماريا.

المطلوب :

إيجاد كافة الأعداد الأولية الأكبر من 13 والأصغر من 50 والتي تنطبق عليها شروط بيرند ( 6 نقاط زرقاء ) .

إيجاد عدد أولي مناسب أكبر من 60. ( ربما يكون هناك أكثر من عدد )

هل يمكن أن يكون هناك عدد لا نهائي من هذه الأعداد الأولية؟

(2+4) نقاط حمراء

الموعد النهائي للتسليم هو /01/02/2024

يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.

 

https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html

griechisch:

"Έχεις πολλούς αριθμούς στο χαρτί σου", είπε η Maria στον αδελφό της Bernd.
"Σωστά. Ψάχνω για πρώτους αριθμούς που να τετραγωνίζω αλλά και να ανεβάζω στην τρίτη δύναμη.
Ψάχνω για πρώτους αριθμούς όπου τα αποτελέσματα του υπολογισμού μου αποτελούνται από διαφορετικά ψηφία το καθένα - έτσι ώστε κανένα ψηφίο να μην εμφανίζεται δύο φορές". "Δείξε μου ένα παράδειγμα".
"Λειτουργεί με το 13: 13² = 169 - όλα τα ψηφία είναι διαφορετικά 13³= 2197 - και πάλι, όλα τα ψηφία του αποτελέσματος είναι διαφορετικά. Το 23 δεν περιλαμβάνεται επειδή 23³ = 12167 - το αποτέλεσμα περιέχει το ψηφίο 1 δύο φορές". "Εντάξει."
Βρείτε όλους τους πρώτους αριθμούς μεγαλύτερους από το 13 και μικρότερους από το 50 που πληρούν τις συνθήκες του Bernd. 6 μπλε κουκκίδες.
Βρείτε έναν αντίστοιχο πρώτο αριθμό που να είναι μεγαλύτερος από 60 (ή περισσότερους από έναν). Θα μπορούσε να υπάρχει άπειρος αριθμός τέτοιων πρώτων αριθμών; (2 + 4) κόκκινες κουκκίδες.

Διορία παράδοσης λύσης 01/02/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.

https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html

chin

第774题

“在你的纸上有很多数字。” 玛丽雅对她的哥哥伯恩德说。
“没错!我正在寻找既可以平方又可以求三次方的素数。但是这些素数的计算结果是由不同的数字组成,每个数字不能出现两次。”
“请给我举一个例子。”
“例如:数字13,13² = 169, 这个数字中的所有数字都不同。
13³ = 2197, 这个数字中的所有数字也都不一样。
但是数字23不属于这一类,因为 23³ = 12167,这个答案中有两个1。”
“明白了。”
在大于13和小于50之间寻找所有符合伯恩德说出的条件的素数。 6 个蓝点。
找到一个大于数字60的合适的素数,也可以多找几个。 这样的素数是否是无穷的? (2 + 4) 个红点。

截止日期: 2024.02.01. – 请用徳语或英语回答

https://www.schulmodell.eu/2952-woch-chin.html

rus

«У тебя на бумаге много цифр», сказала Мария своему брату Бернду.
"Правильно. Я ищу простые числа, которые я возвожу в квадрат, а также возвожу в третью степень. При этом я ищу такие простые числа, чтобы результаты состояли из разных цифр, значит ни одна цифра не появляется дважды в одном результате». «Покажи мне пример».
«С числом 13 получается: 13² = 169 — все цифры разные, 13³ = 2197 — здесь тоже все цифры результата разные. Число 23 не включается в это множество, поскольку 23³ = 12167 — результат содержит цифру 1 дважды». «Всё ясно».
Найти все простые числа больше 13 и меньше 50, к которым применимы условия Бернда. 6 синих очков.
Найти подходящее простое число больше 60. (Охотно несколько.)
Может ли быть, что таких простых чисел бесконечно много? (2 + 4) красных очков.

https://www.schulmodell.eu/2910-%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B0-%D0%BD%D0%B5%D0%B4%D0%B5%D0%BB%D0%B8-mathematics.html

hun

 - De sok szám van a papírodon - mondta Mária a bátyjának, Berndnek.
"Így van. Prímszámokat keresek, amelyeket négyzetre emelek, de a harmadik hatványt is kiszámolom.
Ennek során olyan prímszámokat keresek, amelyekben a számításom eredményei különböző számjegyekből állnak – azaz egyetlen számjegy sem fordul elő kétszer." "Mutass egy példát."
"A 13: 13² = 169 - minden számjegy különböző 13³ = 2197 - itt is az eredmény minden számjegye más. A 23-as szám nem tartozik közéjük, mert 23³ = 12167 – az eredmény kétszer tartalmazza az 1-es számjegyet." "Rendben."
Keresendő minden 13-nál nagyobb és 50-nél kisebb prímszám, amelyre Bernd feltételei vonatkoznak. 6 kék pont.
Továbbá találni kell egy megfelelő prímszámot, amely nagyobb, mint 60 több is lehet). Lehetséges, hogy végtelen számú ilyen prímszám létezik? (2 + 4) piros pont.

https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html

frz

« T’as beaucoup de chiffres sur ton papier », dit Maria à son frère Bernd.
"Effectivement. Je recherche des nombres premiers que je mets au carré mais que j'élève également à la puissance trois.
Et je recherche des nombres premiers dont les résultats de mon calcul sont chacun constitués de chiffres différents - donc aucun chiffre n'apparaît deux fois. " " Montrez-moi un exemple. "
« Cela fonctionne avec 13 : 13² = 169 - tous les chiffres sont différents 13³ = 2197 - ici aussi tous les chiffres du résultat sont différents. Le 23 n'est pas inclus, car 23³ = 12167 - le résultat contient le chiffre 1 deux fois." "Compris."
Tous les nombres premiers supérieurs à 13 et inférieurs à 50 auxquels s'appliquent les conditions de Bernd sont a trouvés. 6 points bleus.
Trouver un nombre premier approprié, supérieur à 60. (Peut-être plusieurs.) Se pourrait-il qu’il existe un nombre infini de ces nombres premiers ? (2 + 4) points rouges.

https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html

esp

“Tienes muchos números en tu papelito”, le dice María a su hermano Bernd.
“Así es. Busco números primos que eleve al cuadrado, pero también a la tercera potencia.
Busco números primos en los que cada uno de los resultados de mi cálculo esté formado por dígitos diferentes, de modo que ningún dígito aparezca dos veces.” “Muéstrame un ejemplo.”
“Funciona con 13: 13² = 169 - todos los dígitos son diferentes 13³= 2197 - de nuevo, todos los dígitos del resultado son diferentes. El 23 no se incluye porque 23³ = 12167 - el resultado contiene el dígito 1 dos veces.” “Muy bien.”
Encuentra todos los números primos mayores que 13 y menores que 50 que cumplan las condiciones de Bernd. 6 puntos azules.
Encuentra un número primo igual que sea mayor que 60 (o más de uno).
¿Es posible que haya infinitos números primos de este tipo? (2 + 4) puntos rojos.

https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html

en

"You've got a lot of numbers on your piece of paper," Maria said to her brother Bernd.
"That's right. I'm looking for prime numbers that I square but also raise to the third power.
I'm looking for prime numbers where the results of my calculation each consist of different digits - so no digit occurs twice." "Show me an example."
"It works with 13: 13² = 169 - all digits are different 13³= 2197 - again, all digits of the result are different. The 23 is not included because 23³ = 12167 - the result contains the digit 1 twice." "All right."
Find all prime numbers greater than 13 and less than 50 that fulfil Bernd's conditions. 6 blue points.
Find a matching prime number that is greater than 60 (or more than one).
Could it be that there are an infinite number of such prime numbers? (2 + 4) red points.

Deadline for solution is the 1th. February 2024.

https://www.schulmodell.eu/1453-this-weeks-maths-problem.html

it

"Ma hai tanti numeri scritti sul tuo foglio", disse Maria a suo fratello Bernd.
"Esatto. Sto cercando numeri primi che posso elevare al quadrato o al cubo. Nel farlo, cerco primi nei quali i risultati dei miei calcoli consistano in cifre diverse, quindi nessuna cifra si ripete." "Dimmi un esempio."
"Inizia con il 13: 13^2 = 169 - tutte cifre diverse. 13^3 = 2197 - anche qui tutte le cifre del risultato sono diverse. Il 23 non va bene, perché 23^3 = 12167 - il risultato contiene due volte la cifra 1." "Tutto chiaro."
Trovate tutti i numeri primi che soddisfano le condizioni di Bernd, maggiori di 13 e inferiori a 50. 6 punti blu.
Si deve trovare almeno un numero primo che soddisfi le condizioni e sia maggiore di 60. (Anche più di uno, se possibile.)
Potrebbe essere che ci siano infiniti numeri primi che soddisfano queste condizioni? (2 + 4) punti rossi.

https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html

 

Lösung/solution/soluzione/résultat/Решение:

 Musterlösung von Maximilian, danke. --> pdf <--

Bei der überschaubaren Anzahl von Lösungen haben viele andere Einsender einfach nur ein Tabellenkalkulation genutzt.