Serie 65
Beitragsseiten
Aufgabe 11
779. Wertungsaufgabe
deu
„Oh je, schon wieder das 3-4-5 Dreieck des Pythagoras“, meinte Mike. „Das ist richtig und ob mit dieser Zeichnung das wirklich letzte Geheimnis dieses Dreiecks gelöst wird – wer weiß das schon?“, sagte Lisa.
Zu sehen ist der kleine Kreis – der Inkreis des Dreiecks. Die Punkte D, E und F sind die Berührungspunkte. Der große Kreis hat als Mittelpunkt den Punkt C und geht durch die Punkte I und B. Die Rechtecke sind kongruent zueinander.
Wie groß sind Umfang und Flächeninhalt des Siebenecks ABCIGJL? 5 blaue Punkte.
Nun die Aufgabe für beliebig große rechtwinklige Dreiecke. Der zu sehende Kreis ist wieder der Inkreis, die Rechtecke sind kongruent zueinander. Ist der Flächeninhalt des Siebenecks ABCIGJL genau dreimal so groß wie der Flächeninhalt des roten Dreiecks? 5 rote Punkte
https://www.schulmodell.eu/aufgabe-der-woche.html
Termin der Abgabe 14.03.2024. Limtago por sendi viajn solvojn estas la 14-a de marto 2024. Срок сдачи 14.03.2024. Ultimo termine di scadenza per l´invio è il 14.03.2024. Deadline for solution is the 14th. March 2024. Date limite pour la solution 14.03.2024. Soluciones hasta el 14.03.2024. Beadási határidő 2024.03.14 截止日期: 2024.03.14 – 请用徳语或英语回答 Διορία παράδοσης λύσης 14/03/2024 Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
الموعد النهائي للتسليم هو 14/03/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
esperanto:
„Ho ve, jam desove la 3-4-5 triangulo de Pythagoras“, opiniis Mike. „Tio ĝustas. Ĉu vere la lasta sekreto de tiu triangulo estos solvata — kiu scias?“, diras Lisa.
Videbla estas la malograda cirklo — la ena cirklo de la triangulo. La punktoj D, E kaj F estas la tuŝaj punktoj. La granda cirklo havas la mezpunkton C kaj trairas la punktojn I kaj B. La rektanguloj kongruas unu al la alia.
Kiom grandaj estas la perimetro kaj la areo de la seplatero ABCIGJL? 5 bluaj poentoj.
Nun la tasko por laŭvole grandam rektangulaj trianguloj. La videbla cirklo same estas la ena cirklo, la rektanguloj kongruas unu al la alia. Ĉu la areo de la seplatero ABCIGJL estas ekzakte trioble granda kiel la areo de la triangulo? 5 ruĝaj poentoj
Limtago por sendi viajn solvojn estas la 14-a de marto 2024. La solvojn skribu prefere en la germana, angla aŭ franca.
https://www.schulmodell.eu/3155-tasko-de-la-semajno-aufgabe-esperanto.html
arabisch-التمرين الإسبوعي:
قال مايك : "يا إلهي، إنه مثلث فيثاغورث 3-4-5 مرة أخرى ".
قالت ليزا: "هذا صحيح، من يدري فيما إذا كان هذا المخطط سيحل آخر لغز لهذا المثلث ؟".
في المخطط يمكننا مشاهدة الدائرة الصغيرة و التي هي الدائرة الداخلية لمثلث فيثاغورث ABC .
النقاط D و E و F هي نقاط تماس الدائرة الداخلية لأضلاع المثلث ABC.
إن مركز الدائرة الكبيرة هو النقطة C كما أنها تمر بالنقطتين I و B .
إن المستطيلان الأخضر و الأزرق متطابقان مع بعضهما البعض.
ما هو محيط ومساحة الشكل السباعي ABCIGJL؟ 5 نقاط زرقاء.
التمرين الآن من أجل أي مثلث قائم الزاوية. (ليس بالضرورة مثلث فيثاغورث 3-4-5)
في المخطط يمكننا مشاهدة الدائرة الصغيرة و التي هي الدائرة الداخلية للمثلث القائم الزاوية ABC .
المستطيلان الأخضر و الأزرق متطابقان مع بعضهما البعض
هل مساحة الشكل السباعي ABCIGJL ثلاثة أضعاف مساحة المثلث الأحمر بالضبط؟ 5 نقاط حمراء
الموعد النهائي للتسليم هو /14/03/2024
يرجى إرسال الحل باللغة الألمانية أو الإنجليزية أو الفرنسية فقط.
https://www.schulmodell.eu/3150-arabisch-التمرين-الإسبوعي.html
griechisch:
"Θεέ μου, πάλι το τρίγωνο 3-4-5 του Πυθαγόρα", είπε ο Mike. "Σωστά, και ποιος ξέρει αν αυτή η ζωγραφιά θα λύσει το τελικό μυστήριο αυτού του τριγώνου", είπε η Lisa.
Μπορείτε να δείτε τον μικρό κύκλο - τον εγγεγραμμένο κύκλο του τριγώνου. Τα σημεία D, E και F είναι τα σημεία επαφής. Ο μεγάλος κύκλος έχει κέντρο το σημείο C και περνάει από τα σημεία Ι και Β. Τα ορθογώνια είναι σύμμετρα μεταξύ τους.
Ποια είναι η περίμετρος και το εμβαδόν του επταγώνου ABCIGJL; 5 μπλε κουκκίδες.
Τώρα η εργασία για ορθογώνια τρίγωνα οποιουδήποτε μεγέθους. Ο εικονιζόμενος κύκλος είναι και πάλι ο εγγεγραμμένος κύκλος, τα ορθογώνια είναι συγγραμμικά μεταξύ τους. Είναι το εμβαδόν του επταγώνου ABCIGJL ακριβώς τριπλάσιο του εμβαδού του κόκκινου τριγώνου; 5 κόκκινες κουκκίδες
Διορία παράδοσης λύσης 14/03/2024. Παρακαλείστε να υποβάλετε τις λύσεις στα αγγλικά ή στα γερμανικά.
https://www.schulmodell.eu/3126-wochenaufgabe-griechisch.html
chin
第779题
“天哪,又是毕达哥拉斯 3-4-5 三角形。” 迈克说。
“对的! 能否用这张图来解开这个三角形的最终谜团, 谁知道呢?” 丽莎说。
可以看到一个小的圆,是三角形的内切圆。 点D、E 和 F点是切点。 大圆以点C为圆心,经过I点和B点。两个矩形是全等的。
这个七边形ABCIGJL的周长和面积是多少? 5 个蓝点。
现在的任务是对于一个任意直角三角形, 图中也可以看到一个内切圆,矩形也是全等的。 那么七边形ABCIGJL的面积正好是红色三角形面积的三倍吗? 5个红点
截止日期: 2024.03.14. – 请用徳语或英语回答
https://www.schulmodell.eu/2952-woch-chin.html
rus
«О боже, снова пифагорейский треугольник 3-4-5», — сказал Майк. «Правильно, а разрешит ли этот рисунок последнюю тайну этого треугольника – кто знает?» – сказала Лиза.
Видна маленькая окружность — вписанная окружность треугольника. Точки D, E и F являются точками соприкосновения. Большая окружность имеет точку C в центре и проходит через точки I и B. Прямоугольники конгруэнтны друг другу.
Каковы периметр и площадь семиугольника ABCIGJL? 5 синих очков.
Теперь задача для прямоугольных треугольников любого размера. Окружность, которую вы видите, — это снова вписанная окружность, прямоугольники конгруэнтны друг другу. Площадь семиугольника ABCIGJL ровно в три раза ли больше площади красного треугольника? 5 красных очков
hun
"Oh, már megint a 3-4-5 pitagoraszi háromszög" – mondta Mike. "Így van, és hogy ez a rajz valóban megoldja-e ennek a háromszögnek az utolsó rejtélyét - ki tudja?" - mondta Lisa.
Láthatjuk a kis kört – a háromszögbe beírt kört. A D, E és F pontok az érintkezési pontok. A nagy kör középpontja a C pont, és áthalad az I és B pontokon. A téglalapok kongruensek egymással.
Mekkora az ABCIGJL heptagon kerülete és területe? 5 kék pont
És most a feladat tetszőlegesen nagy derékszögű háromszögekre. A látható kör ismét a beírt kör, a téglalapok egybevágnak egymással. Igaz, hogy az ABCIGJL heptagon területe pontosan háromszor akkora, mint a piros háromszög területe? 5 piros pont
https://www.schulmodell.eu/2648-a-h%C3%A9t-feladata.html
frz
"Oh, encore le triangle pythagoricien 3-4-5", a déclaré Mike. "C'est vrai et si ce dessin résoudra le dernier mystère de ce triangle, qui sait ?", a déclaré Lisa.
On peut voir le petit cercle – le cercle intérieur du triangle. Les points D, E et F sont les points de contact. Le grand cercle a le point C comme centre et passe par les points I et B. Les rectangles sont congrus les uns aux autres.
Quels sont le périmètre et l'aire de l'heptagone ABCIGJL ? 5 points bleus.
Passons maintenant à l’exercice des triangles rectangles de n'importe quelle taille. Le cercle qu’on voit est à nouveau le cercle inscrit, les rectangles sont congrus les uns aux autres. L'aire de l'heptagone ABCIGJL, est-elle exactement trois fois l'aire du triangle rouge ? 5 points rouges
https://www.schulmodell.eu/2201-probleme-de-maths-de-la-semaine.html
esp
“Vaya, otra vez el triángulo 3-4-5 de Pitágoras”, dijo Mike. “Así es, y quién sabe si este dibujo resolverá el misterio final de este triángulo”, dijo Lisa.
Se puede ver el círculo pequeño, el círculo inscrito del triángulo. Los puntos D, E y F son los puntos de contacto. El círculo grande tiene como centro el punto C y pasa por los puntos I y B. Los rectángulos son congruentes entre sí.
¿Cuál es el perímetro y el área del heptágono ABCIGJL? 5 puntos azules.
Ahora sigue la tarea para triángulos rectángulos de cualquier tamaño: De nuevo, el círculo mostrado es el círculo inscrito. Los rectángulos son congruentes entre sí. ¿Es el área del heptágono ABCIGJL exactamente tres veces el área del triángulo rojo? 5 puntos rojos.
https://www.schulmodell.eu/2412-ejercicio-de-matem%C3%A1ticas-semanal.html
en
"Oh dear, Pythagoras' 3-4-5 triangle again," said Mike. "That's right, and who knows whether this drawing will solve the final mystery of this triangle," said Lisa.
You can see the small circle - the inscribed circle of the triangle. Points D, E and F are the points of contact. The large circle has point C as its centre and passes through points I and B. The rectangles are congruent to each other.
What are the perimeter and area of the heptagon ABCIGJL? 5 blue points.
Now the task for right-angled triangles of any size. The circle shown is again the inscribed circle, the rectangles are congruent to each other. Is the area of the heptagon ABCIGJL exactly three times the area of the red triangle? 5 red points
Deadline for solution is the 14th. March 2024.
https://www.schulmodell.eu/1453-this-weeks-maths-problem.html
it
"Ecco di nuovo il triangolo 3-4-5 di Pitagora", disse Mike. "È vero, e chi può dire se disegnando questo sia davvero svelato l'ultimo segreto di questo triangolo?", disse Lisa. Si vede il piccolo cerchio – il cerchio all’interno del triangolo. I punti D, E e F sono i punti di tangenza. Il cerchio grande ha come centro il punto C e passa per i punti I e B. I rettangoli sono congruenti tra di loro.
Quali sono il perimetro e l'area dell'ettagono ABCIGJL? 5 punti blu.
Ora il compito per triangoli rettangoli di qualsiasi dimensione. Il cerchio visibile è di nuovo il cerchio interno, i rettangoli sono congruenti tra di loro. L'area dell'ettagono ABCIGJL è esattamente tre volte l'area del triangolo rosso? 5 punti rossi.
https://www.schulmodell.eu/1984-problema-di-matematica-della-settimana.html
Lösung/solution/soluzione/résultat/Решение:
Musterlösung von Paulchen Hunter, danke. --> pdf <--