Serie 59

Beitragsseiten

Aufgabe 9

705. Wertungsaufgabe

„Du hast aber viele Geldstücke vor dir liegen“, sagte Bernd zu seiner Mutter. „Das stimmt, es sind alles 2-Cent Stücke und 5-Cent Stücke, damit könnte ich jeden Preis beim Einkauf bezahlen, zumindest bis ich alle Münzen hingegeben habe“, erwiderte sie.
Stimmt die Aussage der Mutter? Es wird davon ausgegangen, dass sie kein Wechselgeld erhält. Für eine vollständige Begründung gibt es 3 blaue Punkte.
Welche Preise könnte man nicht bezahlen - kein Wechselgeld, wenn die Mutter nur 10-Cent und 7-Cent Stücke hätte. (Klar die 7-Cent Stücke gibt es nicht, aber man kann ja mal so tun.) Für eine vollständige Begründung gibt es 3 rote Punkte.

Termin der Abgabe 17.03.2022. Срок сдачи 17.03.2022. Ultimo termine di scadenza per l´invio è il 17.03.1922. Deadline for solution is the 17th. March 2022. Date limite pour la solution 17.03.2022. Soluciones hasta el 17.03.2022. Beadási határidő 2022.03.17. 截止日期: 2022.03.17 – 请用徳语或英语回答

chin

第705题

“你面前放这么多硬币。”贝恩德对他的妈妈说。
“对呀,都是2欧分和5欧分的,这样我在买东西时不同的价格都能直接支付,直到我把所有硬币花光,”贝恩德的妈妈回答道。
假设她没有收到找钱,贝恩德妈妈的说法正确吗?给出一个充分的理由可以得到 3个蓝点。
如果贝恩德的妈妈只有10欧分和7欧分硬币的话,也没有找钱,那么哪个价格是不能支付的?(当然了,是没有7欧分的硬币的,你假装有就好了。)
给出一个充分理由可以得到3个红点。
截止日期: 2022.03.17 – 请用徳语或英语回答

rus

«Ой как много монет перед тобой», — сказал Бернд своей матери. «Да, и все монеты по 2 и 5 центов. Я могу ими заплатить закупку любой цены, по крайней мере, пока не отдала все монеты», — ответила она.
Верно ли заявление матери? Предполагается, что она не получает сдачи. 3 синих очка для полного обоснования.
Какие цены нельзя было бы заплатить без сдачи, если у матери были бы только 10-центовые и 7-центовые монеты? (Конечно, 7-центовых монет нет, но можно сделать вид, что есть.) Полное обоснование принесёт 3 красных очка.

hun

„Előtted aztán sok pénzdarab hever.” – monda Bernd az anyjának. „Igen és ezek mind 2 és 5 centesek, ezekkel bármilyen értéket ki tudnék a boltban fizetni, legalábbis, ha minden érmét odaadnám.” – válaszolta.
Igaz az anyuka kijelentése? Abból kell kiindulni, hogy nem kap váltópénzt. A teljes magyarázat 3 kék pont.
Milyen értéket nem tudna kifizetni, váltópénz nélkül, ha anyának csak 10 és 7 centesei lennének. Persze, nincs 7 centes, csak tegyük fel. A teljes magyarázat 3 piros pont.

frz

"Mais tu as beaucoup de pièces devant toi", a dit Bernd à sa mère. "C'est vrai, ce sont toutes des pièces de 2 cents et de 5 cents, donc je pourrais payer n'importe quel prix en faisant des courses, du moins jusqu'à ce que j’aie donné toutes les pièces", a-t-elle répondu.
La déclaration de la mère est-elle correcte ? On suppose qu'elle ne reçoit pas de monnaie. 3 points bleus pour une justification complète.
Quels prix ne pouvaient pas être payés - aucun change si la mère n'avait que des pièces de 10 cents et 7 cents. (Bien sûr, il n'y a pas de pièces de 7 centimes, mais vous pouvez prétendre que c'est le cas.) 3 points rouges sont donnés pour une justification complète.

esp

"Tienes muchas monedas por delante", le dijo Bernd a su madre. "Así es, todo son monedas de 2 y 5 céntimos, podría pagar cualquier precio con ellas cuando vaya a comprar, al menos hasta que haya dado todas las monedas", respondió.
¿Es cierta la declaración de la madre? Se supone que no recibe cambio. Se reciben 3 puntos azules por una explicación completa.
Qué precios no se podrían pagar (no cambio) si la madre sólo tuviera monedas de 10 centavos y 7 centavos. (Claro, las piezas de 7 céntimos no existen, pero puedes fingir.) Para una justificación completa, se reciben 3 puntos rojos.

en

"You have a lot of coins in front of you," Bernd told his mother. "That's right, they are all 2-cent pieces and 5-cent pieces, I could pay any price with them when I go shopping, at least until I have given all the coins," she replied.
Is the mother's statement true? It is assumed that she does not receive change. You will get 3 blue points for a complete explanation.
What prices could not be paid - no change, if the mother only had 10-cent and 7-cent pieces? (Sure, the 7-cent pieces don't exist, but you can pretend.) For a complete justification, you will get 3 red points.

it

„Quanti spiccioli hai messo davanti a te”, Bernd diceva a sua madre. “Vero! Sono tutte monete da 2 centesimi e 5 centesimi. Con essi potrei pagare ogni prezzo che risulta facendo la spesa – almeno finché ho speso tutte le monete”, replicava.
Ammettendo che non riceve soldi di resto, è vero quello che dice la mamma?
Per la spiegazione complete si ricevano 3 punti blu.
Quale prezzi non si potrebbero pagare (sempre senza soldi di resto), se la mamma avesso solo monete di 10 centesimi e 7 centesimi? (Naturalmente monete di 7 centesimi non esitono; ma facciamo finta di sì.
Per la spiegazione complete si ricevano 3 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

Allgemein gilt: Hat man zwei Münzsorten a und b, die teilerfremd sind, so ist die größte nicht darstellbare (bezahlbare Summe) Zahl S mit S = a*b - a - b. Das gilt streng genommen nur für eine unendliche Anzahl für Münzen.
Eine sehr ausführliche Darstellung von Reinhold M., die die Begrenzung der Münzenanzahl einschließt. Vielen Dank.

Jeder Laden kann in seinen Allgemeinen Geschäftsbedingungen eine Obergrenze für die Annahme von Kleingeld festlegen, und auch ohne eine solche Einschränkung kann nach dem Münzgesetz die Annahme von mehr als
50 Geldstücken verweigert werden. Damit wäre der Betrag also eigentlich auf 50 *0,05 = 2,50 bzw. 50 * 0,10 = 5,00 Euro beschränkt. In einem freundlichen Laden aber gilt:

Lemma 1: Ist G der Gesamtwert aller vorhandenen Münzen in Cent, so ist ein Preis P, P ganz mit 0 <= P <= G, genau dann bezahlbar, wenn G-P bezahlbar ist.
Der Beweis ist offensichtlich: G-P ist genau mit den Münzen bezahlbar, die zur Bezahlung von P nicht verwendet wurden.

Lemma 2: Sind p und q teilerfremde positive ganze Zahlen, so entspricht jedem Paar von Restklassen (a mod p, b mod q) genau eine Restklasse c mod pq.
Das ist ein Spezialfall des Chinesischen Restsatzes, den ich nun hier nicht beweisen werde. Ich benutze aber auch nur die folgende offensichtliche Anwendung für 2 und 5 (und später für 7 und 10).

Ist P eine positive ganze Zahl (der zu bezahlende Preis in Cent), so gibt es (eindeutig bestimmte) ganze Zahlen p, q und r mit 0 <= q <= 4, 0 <= r <= 1, so dass
   (1)   P = 10p + 2q + 5r.

Sind andererseits n2 und n5 die Anzahlen der vorhandenen 2- bzw. 5-Cent-Stücke, so gibt es (eindeutig bestimmte) ganze Zahlen a, b, c und d, so dass
   (2)   n2 = 5a + b, a >= 0, 0 <= b <= 4,
   (3)   n5 = 2c + d, c >= 0, 0 <= d <= 1.
Der Gesamtwert G aller vorhandenen Münzen in Cent ist damit
   (4)   G = 2(5a + b) + 5(2c + d) = 10(a + c) + 2b + 5d.

Betrachtet man nun zunächst alle möglichen Werte von (q, r) in (1), so stellt man fest, dass 2q + 5r > 10 für (3, 1), und zwar 11, und für (4, 1), und zwar 13. Dann ist also p < 0 - und folglich für P = 1 und für P = 3 und nach Lemma 1 auch für G-3 und für G-1 keine Münzzuordnung möglich. Weiterhin erkennt man beim Vergleich von (1) und (4) als weitere Bedingungen für die Bezahlbarkeit von P    q <= b oder a >= 1, also allgemein n2 >= 4, und    r <= d oder c >= 1, also allgemein n5 >= 1, was aber beides wegen der Vorhandensein "vieler Geldstücke" als gegeben vorausgesetzt wird.
Weitere Einschränkungen gibt es aber nicht - dann können wir aus dem Vorrat von (4) stets die passende Auswahl für (1) entnehmen.

Also: die Mutter hat nicht ganz recht, vier Beträge (G s. oben) lassen sich nicht bezahlen: 1, 3, G-3 und G-1 Cent. Der Bereich der lückenlos bezahlbaren Beträge reicht (nur) von 4 bis G-4 Cent.
Die Argumentation für die 7- und 10-Cent-Stücke ist vollkommen analog:
Ist P eine positive ganze Zahl (der zu bezahlende Preis in Cent), so gibt es (eindeutig bestimmte) ganze Zahlen p, q und r mit 0 <= q <= 9, 0 <= r <= 6, so dass
   (1')   P = 70p + 7q + 10r.
Sind andererseits n7 und n10 die Anzahlen der vorhandenen 7- bzw. 10-Cent-Stücke, so gibt es (eindeutig bestimmte) ganze Zahlen a, b, c und d, so dass
   (2')   n7 = 10a + b, a >= 0, 0 <= b <= 9,
   (3')   n10 = 7c + d, c >= 0, 0 <= d <= 6.
Der Gesamtwert G aller vorhandenen Münzen in Cent ist damit
   (4')   G = 7(10a + b) + 10(7c + d) = 70(a + c) + 7b + 10d.

Betrachtet man wieder alle möglichen Werte von (q, r) in (1'), so stellt man fest, dass 7q + 10r > 70 für (2, 6), (3, 5), (3, 6), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 3), (6, 4), (6, 5), (6, 6), (7, 3), (7, 4), (7, 5), (7, 6), (8, 2), (8, 3), (8, 4), (8, 5), (8, 6), (9, 1), (9, 2), (9, 3), (9, 4), (9, 5), (9, 6) (in dieser Reihenfolge 74, 71, 81, 78, 88, 75, 85, 95, 72, 82, 92, 102, 79, 89, 99, 109, 76, 86, 96, 106, 116, 73, 83, 93, 103, 113, 123), so dass dann wegen p < 0 für die entsprechenden 27 Werte P = 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 22, 23, 25, 26, 29, 32, 33, 36, 39, 43, 46, 53 keine Münzzuordnung möglich ist.

Weiterhin erkennt man beim Vergleich von (1') und (4') als weitere Bedingungen für die Bezahlbarkeit von P    q <= b oder a >= 1, also allgemein n7 >= 9,
und
   r <= d oder c >= 1, also allgemein n10 >= 6, was aber beides wegen der Vorhandensein "vieler Geldstücke" als gegeben vorausgesetzt wird.
Weitere Einschränkungen gibt es aber nicht - dann können wir aus dem Vorrat von (4') stets die passende Auswahl für (1') entnehmen.

Also: die Mutter hätte dann noch weniger recht, ganze 54 Beträge (G s.oben) lassen sich nicht bezahlen: 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 22, 23, 25, 26, 29, 32, 33, 36, 39, 43, 46, 53 sowie nach Lemma 1 G-53, G-46, G-43, G-39, G-36, G-33, G-32, G-29, G-26, G-25, G-23, G-22, G-19, G-18, G-16, G-15, G-13, G-12, G-11, G-9, G-8, G-6, G-5, G-4, G-3, G-2, G-1 Cent. Der Bereich der lückenlos bezahlbaren Beträge reicht (nur) von 54 bis G-54 Cent.

 

You have no rights to post comments.
Zum Kommentieren muss man angemeldet sein.