Serie 59

Beitragsseiten

Serie 59

Hier werden die Aufgaben 697 bis 708 veröffentlicht.

Aufgabe 1

697. Wertungsaufgabe

697 Logikrätsel

Schon sehr lange war der Onkel von Bernd nicht bei einer Familienfeier gewesen. Seine Arbeitsstätten musste er oft wechseln, aber nun hatte er in Berlin eine dauerhafte Arbeit gefunden. Nach und nach vervollständigte er auch seine Küche (Gefrierschrank, Elektroherd, Waschmaschine, Geschirrspüler und Kühlschrank). Allerdings konnte er die Geräte nur nach und nach auf Raten kaufen. - Die Laufzeiten lagen bei 6, 9, 11, 12 bzw. 14 Monaten und auch die Ratenzahlungen waren unterschiedlich (45, 50, 60, 75 bzw. 80 €). Im vorletzten Jahr hatte er fünf Monate lang jeweils ein Gerät pro Monat angeschafft – Mai, Juni, Juli, August und September.

Die Angaben, die Bernds Onkel machte, waren ziemlich durcheinander.

  1. Der erste Einkauf hatte keine Laufzeit von 11 Monaten. Gut zu wissen, 11 Monate lang waren jeweils 50 € zu bezahlen.
  2. Zufällig passten einmal Monat und Laufzeit zusammen und zwar im Juni: 6. Monat im Jahr und 6 Monate Laufzeit.
  3. Die Waschmaschine wurde als drittes Gerät gekauft.
  4. Die Rate für das letzte Gerät betrug 60 €.
  5. Für den Gefrierschrank musste er jeweils 45 € bezahlen.
  6. Direkt nach dem Kühlschrank wurde etwas gekauft, wofür er 75 € pro Monat bezahlen musste. Diese 75 € Laufzeit war länger als die für den Elektroherd.
  7. Der Vertrag für den Geschirrspüler umfasste genau 12 Zahlungen.

Wann, bestellte Bernds Onkel welches Gerät, welche Laufzeiten hatten die Verträge und was wurde jeweils bezahlt? 6 blaue Punkte

Monat

Artikel

Ratenzahlung

Laufzeit

Mai

     

Juni

     

Juli

     

August

     

September

     

Nachdem der Onkel von Bernd ausführlich über seine Geldausgaben berichtet hatte, kam er endlich mal zu etwas anderem. Er war am 12.12.2021 bei einem Rennen der Skilangläufer gewesen. Aber der Bericht war wieder nicht so einfach. Die Langläufer auf den Plätzen 1 bis 5 hatten die Startnummern 12, 14, 17, 18 bzw. 21. Sie hießen mit Vornamen Bert, Holger, Jens, Marcus, bzw. Werner. Die Nachnamen waren Jost, Keil, Lurch, Reis bzw. Schuster. Wie erwartet lag Bert Jost ziemlich weit vorn.

  1. Den zweiten Platz erreichte der Läufer mit der Startnummer 12.
  2. Werner – mit Startnummer 18 – heißt Keil oder Lurch.
  3. Die Platzierung von Marcus ist mindestens 2 Positionen schlechter als die von Lurch.
  4. Platz vier wurde von dem Läufer Keil erreicht, dessen Startnummer kleiner als 18 ist.
  5. Jens gewann das Rennen, hieß aber weder Schuster noch hatte er er Startnummer 21.
  6. Holger hatte nicht die Startnummer 17.

Wie hießen die Läufer (Vor – und Nachname), welchen Platz erreichten sie und wie lautete ihre Startnummer? 6 rote Punkte

Vorname

Nachname

Startnummer

erreichter Platz

 Bert

     

 Holger

     

 Jens

     

 Marcus

     

 Werner

     

--> Vorlage zum Eintragen <--

Termin der Abgabe 06.01.2022. Срок сдачи 06.01.2022. Ultimo termine di scadenza per l´invio è il 06.01.2022. Deadline for solution is the 6th. January 2022. Date limite pour la solution 06.01.2022. Soluciones hasta el 06.01.2022. Beadási határidő 2022.01.06. 截止日期: 2022.01.06 – 请用徳语或英语回答

chin

开启系列59

第697题 逻辑题

贝恩德的叔叔已经很久没有参加家庭聚会了。他经常不得不更换工作地点,但是现在他在柏林找到了一份固定的工作。他也逐渐地布置好了他的厨房:
冰柜、电炉、洗衣机、洗碗机和冰箱。然而他只能分期购买这些电器。分期付款期限为 6、9、11、12、14个月,分期付款的数目也不同,月付分别为 45、50、60、75和80欧元。
在前年他连续五个月每月购进一台电器,分别是五月、六月、七月、八月和九月。贝恩德的叔叔提供的信息相当地混乱。

  1. 第一次的购物没有11个月的期限。需要明确知道的是,11个月的期限需要月付50欧元。
    2. 碰巧的是有一个月份和付款期限相同,就是在六月份:一年中的第六个月和六个月的付款期限。
    3. 洗衣机是作为第三台电器购买的。
    4. 最后一台电器的月付是60欧元。
    5. 冰柜必须月付45欧。
    6. 在电冰箱之后购买的电器月付75欧元,这个75欧元的付款期限要长于电炉的期限。
    7. 洗碗机的合同正好分期12个月。

试问:贝恩德的叔叔何时购买了哪种电器,合同都是多长期限以及如何支付? 6个蓝点

697 1 chin

在贝恩德的叔叔详细汇报了他的财政支出后,终于可以做其它的事情了。
在2021年12月12日他参加了越野滑雪比赛。但是这份报道又没那么简单。
排名1到5参赛者的号码有12, 14, 17, 18 和 21。他们的名字是:伯特(Bert)、霍尔格(Holger)、延斯(Jens)、马库斯(Marcus)和维尔纳(Werner)。
他们的姓氏有:约斯特(Jost)、凯尔(Keil)、鲁奇 (Lurch)、雷斯(Reis)和舒斯特(Schuster)。正如预期的那样,伯特·约斯特(Bert Jost)排名
相当靠前。

  1. 第二名选手是12号。
    2. 维尔纳(Werner)的号码是18 ,他姓凯尔(Keil)或者鲁奇 (Lurch)。
    3. 马库斯(Marcus)的排名至少比鲁奇(Lurch)差2个名次。
    4. 第4名被选手凯尔(Keil)取得,他的号码比18小。
    5. 延斯(Jens)赢得了比赛,但他既不姓舒斯特(Schuster),号码也不是21。
    6. 霍尔格(Holger)的号码不是17。

请问参赛者都叫什么名字(名字和姓氏)?他们的排名以及号码是多少? 6个红点

697 2 chin

截止日期: 2022.01.06 – 请用徳语或英语回答

russ

Старт серии 59 697 Логическая головоломка

Дядя Бернда очень давно не был на семейных торжествах. Ему часто приходилось менять место работы, но теперь он нашёл постоянную работу в Берлине. Постепенно он пополнил и свою кухню (морозилка, электрическая плита, стиральная машина, посудомоечная машина и холодильник). Однако он мог покупать эти устройства только постепенно, в рассрочку. Сроки были 6, 9, 11, 12 и 14 месяцев, а ежемесячная ставка была разная (45, 50, 60, 75 и 80 €). В позапрошлом году он покупал по одному устройству в месяц в течении пяти месяцев - май, июнь, июль, август и сентябрь.

Информация, предоставленная дядей Бернду, была весьма запутанной.
1. Срок кредита первой покупки не равнялся 11 месяцам. Полезно знать, что пришлось заплатить по 50 евро в течении 11 месяцев.
2. Случайно один раз совпали месяц и срок, а именно в июне: 6-ой месяц года и 6 месяцев срока.
3. Стиральная машина куплена как третья машина.
4. Ежемесячная ставка последнего устройства - 60 евро.
5. Ему пришлось заплатить по 45 евро за морозилку.
6. Прямо после холодильника было куплено что-то, за что пришлось заплатить месячно 75 евро. Срок этого кредита был больший, чем у электрической плиты.
7. Контракт на посудомоечную машину содержал ровно 12 платежей.
Когда дядя Бернда заказал какое устройство, на каких условиях были заключены контракты и сколько платил он в каждом случае месячно? 6 синих очков

Месяц

Товар

Уплата в рассрочку

Срок кредита

Май

     

Июнь

     

Июль

     

Август

     

Сентябрь

     

После того, как дядя Бернда подробно рассказал о своих расходах, он наконец занялся кое-чем другим. 12 декабря 2021 года он посетил соревнование гоночных лыжников. Но отчёт снова оказался не таким простым. Лыжники, занявшие места с 1 по 5, имели стартовые номера 12, 14, 17, 18 и 21. Их имена были Берт, Хольгер, Йенс, Маркус и Вернер. Фамилии были Йост, Кейл, Лурх, Рейс и Шустер. Как и ожидалось, Берт Йост занял одно из передних мест.

  1. Бегун со стартовым номером 12 занял второе место.
  2. Фамилия Вернера - со стартовым номером 18 - Кейл или Лурх.
  3. Позиционирование Маркуса как минимум на 2 места хуже, чем у Лурха.
  4. Четвёртое место занял бегун Кейл, у которого стартовый номер меньше 18.
  5. Йенс выиграл гонку, но его звали не Шустер, и у него не было стартового номера 21.
  6. У Хольгера не было стартового номера 17.

Как звали бегунов (имя и фамилию), каких позиций они достигли и какой у них стартовый номер? 6 красных очков

Имя

Фамилия

Стартовый номер

Достигнутое место

 Берт

     

 Хольгер

     

 Йенс

     

 Маркус

     

 Вернер

     

hun

697

Már régóta nem vett részt Bernd nagybátyja családi ünnepségen. Gyakran kellett váltania a munkahelyét, de végre talált egy tartós állást Berlinben. Apránként kibővítette a konyháját is (fagyasztó, elektromos tűzhely, mosógép, mosogatógép és hűtőszekrény). Mindenesetre a gépeket csak egymás után tudta megvenni. A hitel futamideje 6,9,11, 12 és 14 hónap és a részletfizetés is különböző (45, 50, 60, 75 és 8o Euro). Tavalyelőtt öt hónapon keresztül havonta egy gépet szerzett be – májusban, júniusban, júliusban, augusztusban és szeptemberben. Az adatok, amiket Bernd nagybátyja megadott, nagyon kuszák voltak.

  1. Az első vásárlás futamideje nem 11 hónap volt. Jó tudni, hogy 11 hónapon keresztül 50 eurót kellett fizetnie.
  2. Véletlenül egyszer egy hónap és futamidő passzolt, júniusban: 6. hónap és 6 hónapos futamidő.
  3. A mosógépet harmadiknak vette.
  4. Az utolsó gép havi rátája 60 euró volt.
  5. A fagyaszóért havi 45 eurót kellett fizetnie.
  6. Közvetlenül a hűtőgép után vett valamit, amiért havi 75 eurót kellett fizetnie. Annek a 75 eurósnak a futamideje hosszabb volt, mint a tűzhelyé.
  7. A mosogató szerződése pontosan 12 hónapos volt.

Mikor, milyen futamidőre, milyen részletfizetéssel rendelte Bernd nagybátyja a gépeket? 6 kék pont

Miután Bernd nagybátyja a kiadásairól részletesen beszámolt el tudott mesélni valami mást is. 2021.12.12-én, sífutó versenyen volt. De a tudósítás megint nem sikerült túl egyszerűen. A sífutóknak 1-től 5-ig a 12,14,17,18 és 21-es rajtszámuk volt. Keresztnevük Bert, Holger, Jens, Marcus és Werner. Vezetéknevük pedig Jost, Keil, Lurch, Reis és Schuster. Mint várható volt, Bernd eléggé összekutyulva mesélte el.

  1. A második helyet a 12-es rajtszámú sífutó érte el.
  2. Werner – a 18-as rajtszámmal – vezetékneve Keil vagy Lurch.
  3. Marcus legalább két helyezéssel rosszabbat ért el, mint Lurch.
  4. A negyedik helyezést Keil lrte el, akinek a rajtszáma kisebb, mint 18.
  5. Jens nyerte a futamot, de sem Schusternek nem hívták, sem a 21-es rajtszámmal indult.
  6. Holger rajtszáma 17.

Hogy hívják a versenyzőket (vezeték és keresztnév), milyen helyezést értek el és mi volt a rajtszámuk? 6 piros pont

frz

697 Exercice logique

L'oncle de Bernd n'était pas allé à une fête de famille depuis très longtemps. Il devait souvent changer de lieu de travail, mais maintenant il avait trouvé un travail permanent à Berlin. Petit à petit, il a également complété sa cuisine (congélateur, plaques électriques, lave-linge, lave-vaisselle et réfrigérateur). Cependant, il n'a pu acheter les appareils que progressivement par versements. - Les échéances étaient de 6, 9, 11, 12 et 14 mois et les acomptes étaient différents (45, 50, 60, 75 et 80 €). L'année dernière, il a acheté un appareil par mois pendant cinq mois - mai, juin, juillet, août et septembre.

Les informations fournies par l'oncle de Bernd étaient assez confuses.

  1. Le premier achat n'avait pas une durée de 11 mois. Bon à savoir, il fallait payer 50€ pendant 11 mois.
  2. Par coïncidence, une fois le mois et les versements appariés, soit en juin : 6e mois de l'année et 6 mois de versements.
  3. La machine à laver a été achetée comme troisième appareil.
  4. Le versement pour le dernier appareil était de 60 €.
  5. Il a dû payer 45 € par versement pour le congélateur.
  6. Immédiatement après le réfrigérateur, quelque chose a été acheté pour lequel il a dû payer 75 €. Cette période de versements de 75 € était plus longue que celle de la cuisinière électrique.
  7. Le contrat pour le lave-vaisselle comportait exactement 12 paiements.

Quand l'oncle de Bernd a-t-il commandé quel appareil, quelles étaient les conditions des contrats et ce qui a été payé dans chaque cas ? 6 points bleus

Mois

Appareil

Versement

Durée

Mai

     

Juin

     

Juillet

     

Août

     

Septembre

     

Après que l'oncle de Bernd eut rendu compte en détail de ses paiements, il se mit finalement à autre chose. Il était visiteur d’une course de ski de fond le 12 décembre 2021. Mais le rapport n'était pas si simple. Les skieurs de fond des positions 1 à 5 avaient respectivement les numéros de départ 12, 14, 17, 18 et 21. Leurs prénoms étaient Bert, Holger, Jens, Marcus et Werner. Les noms de famille étaient Jost, Keil, Lurch, Reis et Schuster. Comme prévu, Bert Jost était assez loin devant.

  1. Le coureur avec le numéro de dossard 12 a atteint la deuxième place.
  2. Werner - avec le numéro de dossard 18 - s'appelle Keil ou Lurch.
  3. Le classement de Marcus est au moins 2 positions derrière de celui de Lurch.
  4. La 4e place a été atteinte par le coureur Keil, dont le dossard est inférieur au 18.
  5. Jens a remporté la course, mais son nom n'était ni Schuster ni avait-il le numéro de dossard 21.
  6. Holger n'avait pas le numéro de dossard 17.

Quel était le nom des coureurs (nom et prénom), quelle position ont-ils atteint et quel était leur dossard ? 6 points rouges

Prénom

Nom

Numéro dossard

Classement

 Bert

     

 Holger

     

 Jens

     

 Marcus

     

 Werner

     

esp

697 Problema de lógica

Hacía mucho tiempo que el tío de Bernd no asistía a una fiesta familiar. A menudo tenía que cambiar de lugar de trabajo, pero ahora había encontrado un empleo fijo en Berlín. Poco a poco, también había completado su cocina (congelador, cocina eléctrica, lavadora, lavavajillas y frigorífico). Sin embargo, sólo podía comprar los aparatos gradualmente a plazos. Los plazos eran de 6, 9, 11, 12 y 14 meses respectivamente y las cuotas también variaban (45, 50, 60, 75 y 80 euros respectivamente). El año anterior había comprado un aparato al mes durante cinco meses: mayo, junio, julio, agosto y septiembre. 

Los detalles que dio el tío de Bernd estaban bastante mezclados.

  1. La primera compra no tenía un plazo de 11 meses. Es bueno saberlo, 11 meses fueron 50 euros cada uno.
  2. Por casualidad, el mes y el plazo coincidieron una vez y fue en junio: sexto mes del año y 6 meses de plazo.
  3. La lavadora se compró como tercer electrodoméstico.
  4. La cuota del último aparato fue de 60 euros.
  5. Por el congelador tuvo que pagar 45 euros cada uno.
  6. Se compró algo directamente después de la nevera, por lo que tuvo que pagar 75 euros. Este plazo de 75 euros era más largo que el de la cocina eléctrica.
  7. El contrato del lavavajillas incluía exactamente 12 pagos.

¿Cuándo encargó el tío de Bernd qué aparato, cuáles fueron las condiciones de los contratos y qué se pagó en cada caso? 6 puntos azules

mes

artículo

pago a plazos (cuotas)

plazo

mayo

     

Junio

     

Julio

     

Agosto

     

septiembre

     

Después de que el tío de Bernd informara detalladamente sobre sus gastos de dinero, finalmente llegó a algo más. Había estado en una carrera de esquiadores de fondo el 12.12.2021. Pero el informe tampoco era tan sencillo. Los esquiadores de fondo de los puestos 1 a 5 tenían los números de salida 12, 14, 17, 18 y 21, respectivamente, y sus nombres de pila eran Bert, Holger, Jens, Marcus y Werner, respectivamente. Sus apellidos eran Jost, Keil, Lurch, Reis y Schuster, respectivamente. Como era de esperar, Bert Jost estaba bastante adelantado.

  1. El segundo lugar fue para el corredor con el número de dorsal 12.
  2. Werner - con el dorsal 18 - se llama Keil o Lurch.
  3. La colocación de Marcus es al menos 2 posiciones peor que la de Lurch.
  4. El cuarto puesto lo consiguió el corredor Keil, cuyo número de salida es menor que el 18.
  5. Jens ganó la carrera, pero no se llamaba Schuster ni tenía el número de salida 21.
  6. Holger no tuvo la salida número 17.

¿Cuáles fueron los nombres de los corredores (nombre y apellido), qué lugar alcanzaron y cuáles fueron sus números de dorsal? 6 puntos rojos

nombre

apellido

dorsal

lugar

 Bert      
 Holger      
 Jens      
 Marcus      
 Werner      

en

Start Serie 59

697 logical task

It's been a long time since Thoma's uncle went on a family reunion. He had to change his place of work very often, but no he had found a permanent job in Berlin. On and on he perfected his kitchen (freezer, electric stove, washing machine, dishwasher and refrigerator). However, he could only buy the appliances gradually on instalments. - The repayment periods varied 6, 9, 11, 12 resp. 14 months and the instalments also varied (45, 50, 60, 77 resp. 80 €). In the year before last he had purchased one device per month for five months – May, June, July, August and September.

The details that Bernd's uncle gave were quite mixed up.

  1. The first purchase did have a duration of 11 months. Good to know, for 11 months whe had to pay 50 € per month.
  2. By chance, the month and the term coincided once and that was in June: 6th month of the year and 6 months term.
  3. The washing machine was bought as the third appliance.
  4. The instalment for the last appliance was €60.
  5. For the freezer he had to pay 45 € each.
  6. Immediately after the fridge, something was bought for which he had to pay 75 € per month. This €75 term was longer than the one for the electric cooker.
  7. The contract for the dishwasher included exactly 12 payments.

When did Bernd's uncle order which appliance, what were the terms of the contracts and what was paid in each case? 6 blue points

month

article

instalment

repayment period

May

     

June

     

July

     

August

     

September

     

After Bernd's uncle had reported in detail about his money spending, he finally got around to something else. He had been at a race of cross-country skiers on 12.12.2021. But the report was again not so simple. The cross-country skiers in places 1 to 5 had the start numbers 12, 14, 17, 18 resp. 21. Thier first names were Bert, Holger, Jens, Marcus, resp. Werner. Their surnames were Jost, Keil, Lurch, Reis resp. Schuster. As expected, Bert Jost was quite far ahead.

  1. Second place went to the runner with start number 12.
  2. Werner - with start number 18 - is called Keil or Lurch.
  3. The placing of Marcus is at least 2 positions worse than that of Lurch.
  4. Fourth place was achieved by the runner Keil, whose start number is smaller than 18.
  5. Jens won the race, but his name was neither Schuster nor did he have start number 21.
  6. Holger did not have start number 17.

What were the names of the runners (first and last name), which place did they achieve and what was their start number? 6 red points

First name

Sure name

Start number

Achived position

 Bert

     

 Holger

     

 Jens

     

 Marcus

     

 Werner

     

Deadline for solution is the 6th. January 2022.

it

697 Enigma di Logica

Da un bel po‘, lo zio di Bernd non aveva più partecipato ad una festa in famiglia. Aveva dovuto cambiare spessisimo il suo posto di lavoro, ma finalmente aveva trovato un impegno fisso a Berlino. Poco a poco aveva complettato la sua cucina (congelatore, fornello elettrico, lavatrice, lavastoviglie e frigorifero). Doveva fare però un pagamento rateale. La durata era di 6, 9, 11, 12 o 14 mesi. Ed anche le rate mensili erano diversi (45, 50, 60, 75 o 80 €). Nell’anno penultimo aveva ordinato ogni mese un’altro elettrodomestico – maggio, giugno, luglio, agosto, settembre.

Quel che diceva lo zio era molto confuso:

  1. Il primo acquisto non aveva una durata di 11 mesi. Bene a sapere che per 11 mesi c’erano da pagare 50€ mensili.
    2. Casualmente solo una volta la durata corrispondeva al mese: giugno è il sesto mese e la durata era di 6 mesi.
    3. Per terzo, lo zio comprava la lavastovilgie.
    4. La rata per l’ultimo elettrodomestico erano 60€.
    5. Per il congelatore doveva pagare 45€ ogni mese.
    6. Subito dopo il frigorifero comprava una cosa, per la quale doveva pagare 75€ al mese. La durata per questi 75€ era più lunga di quella per il fornello elettrico.
    7. Il contratto per la lavastoviglie conteneva 12 rate.
    Quando lo zio di Bernd ordinava quale elettrodomestico, quale erano le durate e quant’era alta la rata?

Mese

Elettrodomestico

Rata

Durata

Maggio

     

Giugno

     

Luglio

     

Agosto

     

Settembre

     

Dopo aver raccontato profondamente delle sue spese, finalmente lo zio cambiava argomento. Il 12 dicembre 2021 era stato a una gara di sci di fondo. Ma di nuovo il suo racconto non era facile di seguire. I fondisti sui posti 1 a 5 avevano I pettorali 12, 14, 17, 18 eppure 21. I loro nomi erano Bert, Holger, Jens, Marcus e Werner. I loro cognomi erano Jost, Keil, Lurch, Reis e Schuster. Come aspettato, Bert Jost era molto bravo.

  1. Il fondista col pettorale 12 arrivava al secondo posto.
    2. Werner – col pettorale 18 – si chiama Keil o Lurch.
    3. Il piazzamento di Marcus è al minimo due posti peggiore di quello di Lurch.
    4. Il fondista Keil arrivava come quarto; il pettorale di Keil `e inferior di 18.
    5. Jens vinceva la gara; ne si chiama Schuster, na aveva il pettorale 21.
    6. Holger non aveva il pettorale 17.
    Come si chiamavano I fondisti (Nome e Cognome), quale piazzamento avevano e quale era il loro pettorale?

Nome

Cognome

Pettorale

Piazzamento

Bert

     

Holger

     

Jens

     

Marcus

     

Werner

     

 

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Hans, danke. --> pdf <--


Aufgabe 2

698. Wertungsaufgabe

deu

698

Mike berichtete, er habe von Fibonaccimustern geträumt:

698 leer

„Ich habe viele solcher 12er-Felder, die vier Quadrate breit und drei Quadrate hoch sind. Dazu die vier Farben orange (1 und 5 Quadrate ), gelb (1 Quadrat), grün (2 Quadrate) und blau (3 Quadrate) Das 12er-Feld ist jetzt ein Fibonacci-Feld, denn die Fibonaccizahlen starten ja mit 1; 1; 2; 3 und 5. Mit den gefärbten Teilflächen sind andere 12er-Felder so auszulegen, dass andere Muster entstehen und die orangenen Flächen sich nicht an einer Kante berühren.“
Die 12er-Felder dürfen nicht gedreht werden, Muster, die durch Spiegelung hervorgehen würden, zählen nicht als verschieden. (Drei blaue Quadrate in einer Reihe sind verboten, ebenso die Veränderung der Form für die „Fünf“.)

698 voll

4 andere Muster sind zu finden, oder es ist zu zeigen, dass es keine 4 anderen Muster geben kann. - 4 blaue Punkte
Nimmt man eine größere Anzahl von 12er-Feldern, so lassen sich in einer solchen Fläche natürlich mehr Fibonaccizahlen unterbringen.
Welches ist das nächst größere Fibonacci-Feld, welches aus 12er-Feldern gebildet werden kann und vollständig mit Fibonaccizahlen bedeckt ist? Auf Farben muss nicht geachtet werden. 4 rote Punkte

Termin der Abgabe 13.01.2022. Срок сдачи 13.01.2022. Ultimo termine di scadenza per l´invio è il 13.01.2022. Deadline for solution is the 13th. January 2022. Date limite pour la solution 13.01.2022. Soluciones hasta el 13.01.2022. Beadási határidő 2022.01.13. 截止日期: 2022.01.13 – 请用徳语或英语回答

chin

第698题

迈克汇报说,他梦见了斐波那契模型(Fibonaccimustern):

698 leer

"我有很多这样的12格区域,它的宽是四个正方形,高是三个正方形。
我这还有四种颜色:橙色(一个方块和五个方块),黄色(一个方块),绿色(两个方块)和蓝色(三个方块)。
这个12格区域现在就是一个斐波那契区域,因为裴波那契数字就是从1; 1; 2; 3 和 5开始的。

698 voll


用这样被着色的部分组建成了另外一个12格区域,新的模型出现了,橙色的部分不同时碰触一条边。
这个12格区域不能被旋转;由镜像产生的模型也不能作为不同的版本计算在内。"

(三个蓝色的方块不能在一排,同样“五”的形状也不能改变)
请找出四个其他的模型,或者证明没有其他的四个模型- 4个蓝点

取一个更多数量的12格区域,在这个区域里当然会有更多的裴波那契数字。
那么由12格区域组建的,并且可以完全用裴波那契数字覆盖的下一个较大的斐波那契区域是哪个?不必强调颜色! 4个红点
提交日期 2022.01.13 - 请用德语或英语回答

russ

Майк сообщил, что ему снились образцы Фибоначчи:

698 leer

«У меня много этих 12 квадратов, четыре квадрата в ширину и три квадрата в высоту. Вдобавок четыре цвета: оранжевый (1 и 5 квадратов), жёлтый (1 квадрат), зелёный (2 квадрата) и синий (3 квадрата). 12-значное поле теперь является полем Фибоначчи, потому что числа Фибоначчи начинаются с 1; 1; 2; 3 и 5. С частичными областями, окрашенными таким образом, должны быть выложены другие 12-значные поля, так чтобы создался другой узор, при чём оранжевые области не должны касаться у одного ребра».

698 voll
12-значные поля нельзя поворачивать, образцы, полученные в результате зеркального отображения, не считаются разными. (Три синих квадрата подряд запрещены, как и изменение формы для «пятёрки».)
Необходимо найти 4 других образца или показать, что других 4-х моделей быть не может. - 4 синих очка
Если вы возьмёте большее число из 12-значных полей, то, конечно, в такой области можно разместить больше чисел Фибоначчи.
Какое будет следующее большее поле Фибоначчи, которое может быть сформировано из 12-значных полей и покрыто полностью числами Фибоначчи? На цвета обращать внимание не нужно. 4 красных очка

hun

Mike egy Fibonacci-mintával álmodott:

698 leer

Sok ilyen 12-es mezőm volt, ami négy négyzet széles és négy négyzet hosszú. Továbbá négy szín volt bennük, narancs (1 és 5), sárga (1 négyszög), zöld (2 négyszög) és kék (3 négyszög). A 12-es mező most egy Fibonacci-mező, a számok 1,1,2,3 és 5-tel kezdődnek. Ilyen színes részfelülettel más 12-es mező is kirakható úgy, hogy más minta jöjjön létre és a narancs felületek ne érintsenek egy élt. A 12-es mezőt nem szabad forgatni.

698 voll

Minta, ami tükrözéssel jön létre, nem számít különbözőnek. (Három kék négyszög egy sorban tilos, mint ahogy az „ötös“ forma megváltoztatása is). Így négy másik minta található, vagy bebizonyítandó, hogy nincs négy másik ilyen minta. 4 kék pont
Amennyiben a 12-es mező többszörösét vesszük, természetesen több Fibonacci-számot helyezhetünk el. Mekkora a következő Fibonacci-mező, ami 12-es mezőkből áll és teljesen befedhető Fibonacci-számokkal? A színeket nem kell figyelembe venni. 4 piros pont

frz

Mike dit qu'il rêvait de motifs de Fibonacci :

698 leer

J'ai beaucoup de ces 12 carrés qui sont quatre carrés de large et trois carrés de haut. Ensuite, il y a les quatre couleurs orange (1 et 5 carrés), jaune (1 carré), vert (2 carrés) et bleu (3 carrés). Le champ à 12 chiffres est maintenant un champ de Fibonacci, car les nombres de Fibonacci commencent par 1 ; 1; 2 ; 3 et 5. Avec les zones de pièces colorées de cette manière, 12 autres champs doivent être disposés, l'autre motif est créé et les zones oranges ne se touchent pas sur un bord.

698 voll

Les 12 champs ne peuvent pas être tournés, les motifs qui résulteraient de la mise en miroir ne comptent pas comme différents. (Trois carrés bleus consécutifs sont interdits, ainsi que changer la forme du « cinq ») 4 autres motifs sont à trouver, ou il est à démontrer qu'il ne peut pas y avoir 4 autres motifs. - 4 points bleus
Si on prend un plus grand nombre de 12 champs, plus de nombres de Fibonacci peuvent bien sûr être crées dans une telle zone.
Quel est le prochain plus grand champ de Fibonacci, qui peut être formé de 12 champs et est entièrement recouvert de nombres de Fibonacci ? Il n'y a pas besoin de faire attention aux couleurs. 4 points rouges

esp

Mike informa de que ha estado soñando con patrones de Fibonacci:

698 leer

Tengo muchos de estos parches de 12, que tienen cuatro cuadrados de ancho y tres de alto. Hay cuatro colores: naranja (1 y 5 casillas), amarillo (1 casilla), verde (2 casillas) y azul (3 casillas). El campo de 12 es ahora un campo de Fibonacci, porque los números de Fibonacci empiezan por 1; 1; 2; 3 y 5. Con estas zonas coloreadas, hay que trazar otros campos de 12, de modo que se creen otros patrones y las zonas naranjas no se toquen en un borde.

698 voll

Los cuadrados de 12 no pueden ser girados, los patrones que resultarían de la duplicación no cuentan como diferentes. (Tres cuadrados azules seguidos están prohibidos, al igual que cambiar la forma del "cinco") Hay que encontrar otros 4 patrones, o demostrar que no puede haber otros 4 patrones. - 4 puntos azules
Si se toma un número mayor de cuadrados de 12, naturalmente pueden caber más números de Fibonacci en dicha área.
¿Cuál es el siguiente campo de Fibonacci más grande que puede estar formado por cuadrados de 12 y está completamente cubierto por números de Fibonacci? No es necesario prestar atención a los colores.  4 puntos rojos

en

698

Mike reports that he has been dreaming of Fibonacci patterns:

698 leer


I have many such 12-patches, which are four squares wide and three squares high. Therefore I'v got four colours: orange (1 and 5 squares), yellow (1 square), green (2 squares) and blue (3 squares). The field of 12 is now a Fibonacci field, because the Fibonacci numbers start with 1; 1; 2; 3 and 5. With these coloured areas, other fields of 12 are to be laid out, so that other patterns are created and the orange areas do not touch at one edge.

698 voll

The squares of 12 may not be rotated, patterns that would result from mirroring do not count as different. (Three blue squares in a row are forbidden, as is changing the shape for the "five") 4 other patterns must be found, or it must be shown that there cannot be 4 other patterns. - 4 blue points
If you take a larger number of squares of 12, you can naturally fit more Fibonacci numbers on such a surface.
What is the next largest Fibonacci field that can be made up of squares of 12 and is completely covered with Fibonacci numbers? There is no need to pay attention to colours. 4 red points

Deadline for solution is the 13th. January 2022.

it

Mike racconta di aver sognato di disegni tipo Fibonacci:

698 leer

„Ho tanti campi di 12 quadrati ognuno

(quattro quadrati di larghezza e tre quadrati di altezza). Poi i quattro colori arancione (1 e 5 quadrati), giallo (1 quadrato), verde (2 quadrati) e blu (3 quadrati). Il campo di 12 quadrati cosí diventa un disegno tipo Fibonacci, perché i numeri di Fibonacci iniziano con 1; 1; 2; 3; e 5. In un modo simile e con la stessa partizione devono essere inventati altri disegni tipo Fibonacci. I quadrati arancioni devono sempre essere riconoscibile come due parti diversi (cioè non si devono avere un lato in comune). I campi di 12 quadrati non devono essere girati e disegni che sorgono tramite un rispecchiamento uno dallˋ altro non valgono come diversi. Tre quadrati blu in una riga sono vietati come anche un’ altra forma per il „5“)

698 voll

Per l‘elenco di 4 tale disegni diversi ossia per la prova che non esistono 4 altri disegni di questo genere vengono dati 4 punti blu.
Componendo più campi di 12 quadrati, naturalmente ci entrano anche più numeri di Fibonacci.
Qual’è il prossimo campo, composto da campi di 12 quadrati che si può coprire interamente con numeri di Fibonaccci? (Non c’è bsisogno di occuparsi di colori) 4 punti rossi

Lösung/solution/soluzione/résultat/Решение:

Musterlösungen von Maximilian --> pdf <-- und calvin --> pdf <--, danke.


Aufgabe 3

699. Wertungsaufgabe

„Dein Traum der letzten Woche hat mich veranlasst mal ein paar mehr der Zahlen des Herrn Fibonacci aufzuschreiben“, sagte Lisa zu Mike. Hier die ersten 25:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55 , 89, 144, 233, 377, 610 , 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 und die 25. Zahl ist: 75025. Das Schöne an der letzten Zahl ist, diese 25. Zahl endet auch auf 25.“
Das gibt es so vorher nicht, wenn man mal von der ersten Zahl 1 und der 5 absieht.
Es ist eine weitere Fibonaccizahl zu finden, deren „Nummer“ mit der Endung übereinstimmt. 3 blaue Punkte.
Man kann die Fibonaccizahlen der Reihe nach auch mal addieren:
1+1=2, 1+1+2=4; 1+1+2+3=7, 1+1+2+3+5=12, …
Die Gesetzmäßigkeit ist nicht so schwer zu erkennen. Wie lautet diese und wie lässt sie sich beweisen? (1 + 4 = 5) rote Punkte

Termin der Abgabe 20.01.2022. Срок сдачи 20.01.2022. Ultimo termine di scadenza per l´invio è il 20.01.2022. Deadline for solution is the 20th. January 2022. Date limite pour la solution 20.01.2022. Soluciones hasta el 20.01.2022. Beadási határidő 2022.01.20. 截止日期: 2022.01.20 – 请用徳语或英语回答

chin

第699题

“你上周做的梦让我又多写了一些斐波那契数字”。丽莎对迈克说。
“这是前25个数字: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711,28657,46368 。
第25个数字是:75025。最后一个数字很有意思,它既是第25个数字,它的尾数也是25。”
除了第一个数字1(5)以外,找出另外一个斐波那契数字,它的排列顺序和它的尾数相同。 3个蓝点。

人们也可以把数列中的斐波那契数字按顺序相加:
1 + 1 = 2, 1 + 1 + 2 = 4; 1 + 1 + 2 + 3 = 7, 1 + 1 + 2 + 3 + 5 = 12, ...
不难看出它的规律。
那么它是什么样子的?怎么去证明? (1 + 4 = 5)个红点

截止日期: 2022.01.20 – 请用徳语或英语回答

russ

«Твой сон на прошлой неделе заставил меня записать ещё несколько чисел мистера Фибоначчи», сказала Лиза Майку. «Вот первые 25:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 и двадцатьпятое число - 75025. Самое красивое в последнем числе то, что это 25-е число также заканчивается на 25.
Такого раньше не было, кроме первого числа 1 и пятого числа 5.»
Найти другое число Фибоначчи, чей «номер» совпадает с окончанием. 3 синих очка.
Можно также последовательно складывать числа Фибоначчи:
1 + 1 = 2, 1 + 1 + 2 = 4; 1 + 1 + 2 + 3 = 7, 1 + 1 + 2 + 3 + 5 = 12, ...
Закономерность не так уж сложно увидеть. Какая она и как её доказать?
(1 + 4 = 5 красных очков)

hun

„Az álmod előző héten azt eredményezte, hogy kicsit több Fibonacci számot felírtam magamnak.” – MONDTA Lisa Mikenak. Íme, az első 25: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 és a 25. szám: 75025. A legszebb ebben az utolsó, 25. számban az, hogy ez is 25-re végződik. Ilyen nem lehetséges, már ha az 1-es és 5-ös számtól eltekintünk. 3 kék pont.
A Fibonacci számokat sorban össze is adhatjuk: 1+1=2, 1+1+2=4; 1+1+2+3=7, 1+1+2+3+5=12, ...
Az egyenlőséget nem olyan nehéz felismerni. Mi ez és hogyan bizonyíthatjuk be? (1 + 4 = 5) piros pont

frz

"Ton rêve de la semaine dernière m'a fait écrire quelques autres nombres de M. Fibonacci", a déclaré Lisa à Mike. Voici les 25 premiers :
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 et le 25e nombre est : 75025. Ce qui est bien avec le dernier nombre, c'est que ce 25e nombre se termine également sur 25. "
Cela n'existait pas avant, si on ne tient pas compte des premiers nombres 1 et 5.
Est-ce qu’on peut trouver un autre nombre de Fibonacci dont le "nombre" correspond au nombre de la fin. 3 points bleus.
On peut également additionner les nombres de Fibonacci dans l'ordre :
1 + 1 = 2, 1 + 1 + 2 = 4 ; 1 + 1 + 2 + 3 = 7, 1 + 1 + 2 + 3 + 5 = 12, ...
La loi n'est pas si difficile à voir. Qu'est-ce que c'est et comment le prouver ? (1 + 4 = 5) points rouges

esp

"Tu sueño de la semana pasada me hizo escribir algunos números más del señor Fibonacci", le dijo Lisa a Mike. Aquí están los primeros 25:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 y el número 25 es: 75025. Lo bueno del último número es que este número 25 también termina en 25".
Eso no existe antes, salvo el primer número 1 y el número 5.
Hay que encontrar otro número de Fibonacci cuyo "número" coincide con el final. 3 puntos azules.
También puedes sumar los números de Fibonacci uno tras otro:
1+1=2, 1+1+2=4; 1+1+2+3=7, 1+1+2+3+5=12, ...
La regularidad no es tan difícil de reconocer. ¿Qué es y cómo se puede demostrar? (1 + 4 = 5) puntos rojos

en

"Your dream last week prompted me to write down some more of Mr Fibonacci's numbers," Lisa said to Mike. Here are the first 25:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55 , 89, 144, 233, 377, 610 , 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 and the 25th number is: 75025. The nice thing about the last number is, this 25th number also ends in 25."
That doesn't exist before, except for the first number 1 (and the 5).
There is another Fibonacci number to be found whose "number" matches the ending. 3 blue points.
You can also add the Fibonacci numbers one after another:
1+1=2, 1+1+2=4; 1+1+2+3=7, 1+1+2+3+5=12, ...
The regularity is not that difficult to recognize. How is this called and how can it be proved? (1 + 4 = 5) red points
TDeadline for solution is the 20th. January 2022.

it

„Tuo sogno dell‘altra settimana mi ha dato la spinta di annotare i primi 25 numeri di Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 e 75025. È eccezionale che il 25esimo numero ha la terminazione „25“.
A parte l‘ uno con cui inizano i numeri Fibonacci ed il 5 è la prima volta che sorge questa coincidenza. Per 3 punti blu si deve trovare un’altro numero di Fibonacci del quale „posto“ è uguale alla sua terminazione.
Proviamo adesso di sommare i numeri di Fibonacci: 1+1=2; 1+1+2=4; 1+1+2+3=7; 1+1+2+3+5=12;... La regola non è molto di cile da trovare. Qual’è e come si può provare? (1+4=5 punti rossi).

Lösung/solution/soluzione/résultat/Решение:
Musterlösung von Paulchen Hunter, der seinen Rechner zum Glühen gebracht hat, danke --> pdf <--
 


Aufgabe 4

700. Wertungsaufgabe

„Was konstruierst du?“, fragt Mike seine Freundin Lisa. „Das werden dreiseitige Pyramiden. Die Grundfläche ist ein gleichseitiges Dreieck mit der Kantenlänge a. Die drei Seitenflächen sollen zueinander kongruente gleichschenklig rechtwinklige Dreiecke sein. (Kantenlängen a, b, b).“, sagte Lisa.
Wie groß ist die Oberfläche einer solchen Pyramide, wenn b = 8,0 cm groß ist? 4 blaue Punkte
Wie groß das Volumen einer solchen Pyramide, wenn b = 8,0 cm groß ist? 4 rote Punkte

Termin der Abgabe 27.01.2022. Срок сдачи 27.01.2022. Ultimo termine di scadenza per l´invio è il 27.01.2022. Deadline for solution is the 27th. January 2022. Date limite pour la solution 27.01.2022. Soluciones hasta el 27.01.2022. Beadási határidő 2022.01.27. 截止日期: 2022.01.27 – 请用徳语或英语回答

chin

700号

“你在画什么?”迈克问他的好朋友。
“这是三菱锥,它的底儿是一个边长为a的等边三角形, 三个侧面是全等的等腰直角三角形,边长分别是a,b,b。”丽莎说。

如果 b = 8 cm,那么一个这样的三菱锥的表面积是多少? 4个蓝点
如果 b = 8 cm,那么一个这样的三菱锥的体积是多少? 4个红点

截止日期: 2022.01.27 – 请用徳语或英语回答

russ

«Что ты строишь?» - спрашивает Майк свою подругу Лиза. «Это будут трёхсторонние пирамиды. Основание - равносторонний треугольник с длиной ребра a. Три боковых поверхности должны быть конгруэнтными друг к другу равнобедренными прямоугольными треугольниками. (Длины ребер a, b, b) », - сказала Лиза.
Как велика поверхность такой пирамиды, если b = 8,0 см? 4 синих очка
Какова величина объёма такой пирамиды, если b = 8,0 см? 4 красных очка

hun

„Mit szerkesztesz?” – kérdezi Mike a barátnőjét. Háromoldalú piramis lesz. A háromoldalú piramis alapterülete „a” élhosszúságú. A három oldallapnak egymásnak megfelelő egyenlőszögű jobbszögű háromszögnek kell lennie. (Élhossz: a, b, b).” – mondta Lisa.
Mekkora a felülete egy ilyen piramisnak, ha b = 8,0 cm? 4 kék pont
Mekkora a térfogata egy ilyen piramisnak, ha b = 8,0 cm? 4 piros pont

frz

"Qu'est-ce que tu construis ?", demande Mike à sa petite amie. « Ce seront des pyramides à trois côtés. La base est un triangle équilatéral de côté a. Les trois faces doivent être des triangles rectangles isocèles congruents. (Longueurs des bords, a, b, b) », a déclaré Lisa.
Quelle est la surface d'une telle pyramide si b = 8,0 cm ? 4 points bleus
Quel est le volume d'une telle pyramide si b = 8,0 cm ? 4 points rouges

esp

"¿Qué estás construyendo?", le pregunta Mike a su amigo. "Serán pirámides de tres lados. La base es un triángulo equilátero con longitud de arista a. Las tres caras laterales deben ser triángulos rectos isósceles congruentes. (Longitudes de las aristas, a, b, b)", dijo Lisa.
¿Cuál es la superficie de dicha pirámide si b = 8,0 cm? 4 puntos azules
¿Cuál es el volumen de dicha pirámide si b = 8,0 cm? 4 puntos rojos

en

700

"What are you constructing?" Mike asks his friend. "These are going to be three-sided pyramids. The base is an equilateral triangle with edge length a. The three side faces are to be congruent isosceles right triangles. (edge lengths, a, b, b)", Lisa said.
What is the surface area of such a pyramid if b = 8.0 cm? 4 blue points
What is the volume of such a pyramid if b = 8.0 cm? 4 red points

Deadline for solution is the 27th. January 2022.

it

„Cosa stai costruendo?““, Mike chiedeva a sua amica Lisa. “Diventeranno piramidi trilaterali. La base è un triangolo equilatero con la lunghezza del lato a. Le superfici laterali siano triangoli rettangolari, isosceli ed entro di loro congruenti. (Lunghezze dei lati a, b, b).” replicava Lisa.
Qual’è la superficie di una tale piramide, nel caso che b abbia una lunghezza di b = 8,0 cm? 4 punti blu
Qual’è il volume di una tale piramide, nel caso che b abbia una lunghezza di b = 8,0 c? 4 punti rossi

Lösung/solution/soluzione/résultat/Решение:

 


Aufgabe 5

701. Wertungsaufgabe

 

701

„Ach, klebst du schon wieder einmal Würfel zusammen?“, fragte Bernd seine Schwester. „Da hast du recht, wobei es dieses Mal ganz schön wacklig aussieht, da die Würfel nur an den Kanten verklebt sind. Aber mit ganz dünnen rechtwinkligen geformten Plastikecken ging das ganz gut. Die gesamte Kantenlänge wird immer genutzt.“
Auf dem Bild ist ein Beispiel aus drei Würfeln und eines aus vier Würfeln zu sehen.
Wie groß sind Oberfläche und Volumen der beiden gezeigten Körper, wenn die Kantenlänge eines jeden Würfels 6,0 cm groß ist? 4 blaue Punkte.
Wie viele verschiedene Formen kann Maria aus je drei Würfeln basteln? (gedreht oder gespiegelt zählen nicht als unterschiedlich) 4 rote Punkte
(Wer möchte, kann sich das auch mal für 4 Würfel überlegen. Das wären noch mal 6 rote Punkte)

Termin der Abgabe 03.02.2022. Срок сдачи 03.02.2022. Ultimo termine di scadenza per l´invio è il 03.02.2022. Deadline for solution is the 3th. February 2022. Date limite pour la solution 03.02.2022. Soluciones hasta el 03.02.2022. Beadási határidő 2022.02.03. 截止日期: 2022.02.03 – 请用徳语或英语回答

chin

701号

701

“哦,你又把这些骰子粘在一起了吗?”伯恩德问他的妹妹。

“对呀,这次看起来有点摇晃,因为只是把这些骰子的边缘粘在了一起。但是对于非常薄的塑料材质的直角形的角没有问题。它们的整条边都被粘上了。"

图片中看到的是一个由三个骰子组成的示例,一个是由四个骰子组成的示例。

如果每个骰子的边长都是 6 厘米,那么这两个物体的表面积和体积分别是多少? 4 个蓝点。

玛丽雅用三个骰子能够组建出多少种不同的形状?(旋转或镜像不算在内)4个红点

(也可以考虑用4个骰子组建,可以再得到6个红点)

截止日期: 2022.02.03 – 请用徳语或英语回答

russ

701

«О, ты опять склеиваешь кубики?» — спросил Бернд свою сестру. «Ты прав, хотя на этот раз это выглядит довольно шатко, потому что кубики склеены только по краям. Но с очень тонкими, прямоугольно формованными пластиковыми уголками это сработало неплохо. Всегда используется вся длина ребра».
На рисунке показан один пример из трёх кубиков и один из четырёх кубиков.
Каковы поверхность и объём двух изображённых тел, если длина ребра каждого куба равна 6,0 см? 4 синих очка.
Сколько различных фигур может составить Мария из трёх кубиков в каждой фигуре? (повернутые или зеркальные фигуры не считаются разными) 4 красных очка
(Кто хочет, может подумать о фигурах из 4 кубиков. Это принесёт ещё 6 красных очков)

hun

701

„Már megint kockákat ragasztsz össze?” – kérdezte Bernd a húgát. Igen, bár most elég billegőnek tűnik, mert a kockák csak az élüknél vannak összeragasztva. De egészen vékony jobbszögű műanyag sarkokkal megy ez. Mindig az egész élhosszot használom.
A képen egy példa három és egy négy kockából látható.
Mekkora a felülete és a térfogata mindkettő fenti testnek, ha a kockák éle 6 cm? 4 kék pont
Hány különböző formát tud Mária 3 kockából készíteni? (Forgatva, vagy tükrözve nem számít különbözőnek) 4 piros pont
(Aki akarja, 4 kockával is elvégezheti a feladatot. Ez még 6 piros pont lenne.)

frz

701

« Oh, est-ce que tu recolles des cubes ? » demande Bernd à sa sœur. «Tu as raison, bien que cette fois, cela semble assez bancal car les cubes ne sont collés que sur les bords. Mais avec des coins en plastique moulés à angle droit très fins, cela a très bien fonctionné. Toute la longueur du bord est toujours utilisée.
L'image montre un exemple de trois cubes et un de quatre cubes.
Quels sont la surface et le volume des deux corps représentés si la longueur des arêtes de chaque cube est de 6,0 cm ? 4 points bleus.
Combien de formes différentes Maria peut-elle créer à partir de trois cubes ? (tournés ou inversés ne comptent pas comme différents) 4 points rouges
(Qui veut, peut aussi y penser pour 4 dés. Pour encore 6 points rouges)

esp

701

"¿Otra vez estás pegando cubos?", le preguntó Bernd a su hermana. "Tienes razón, aunque esta vez se ve bastante tambaleante porque los cubos sólo están pegados en los bordes. Pero con las esquinas de plástico moldeadas en ángulo recto muy finas iba bastante bien. Siempre se utiliza toda la longitud del borde".
La imagen muestra un ejemplo de tres cubos y otro de cuatro cubos.
¿Cuál es la superficie y el volumen de los dos sólidos mostrados si la longitud de las aristas de cada cubo es de 6,0 cm? 4 puntos azules.
¿Cuántas formas diferentes puede hacer María con tres cubos cada una? (girados o reflejados no cuentan como diferentes) 4 puntos rojos
(Si quieres, también puedes pensar en esto para 4 cubos. Eso sería otros 6 puntos rojos)

en

701

"Oh, are you gluing cubes together again?", Bernd asked his sister. "You're right, although this time it looks pretty shaky because the cubes are only glued together at the edges. But with very thin right-angled moulded plastic corners it went quite well. The whole edge length is always used."
The picture shows an example of three cubes and one of four cubes.
What is the surface area and volume of the two solids shown if the edge length of each cube is 6.0 cm? 4 blue points.
How many different shapes can Maria make out of three cubes each? (rotated or mirrored do not count as different) 4 red points
(If you want, you can also think about this for 4 cubes. That would be another 6 red points.)

Deadline for solution is the 3th. February 2022.

it

701

“Stai di nuovo incollando dei dadi?””, Bernd chiedeva a sua sorella. “Hai ragione, ma questa volta sembra che tutto sia molto tentennante, dato che i dadi sono incollati solo lungo i loro spigoli. Viene però usato sempre tutta la lunghezza dei spigoli.”
Nell’immagine si vedono due esempi; uno con tre dadi, l’altro con quattro dadi.
Quale sono la superficie ed il volume dei due solidi nell’immagine, se la lunghezza dei spigoli di tutti I dadi è sempre 6,0 cm? 4 punti blu
Quanti solido diversi Maria può costruire usando sempre tre dadi? (Girato o specchiato non vale come solido diverso.) 4 punti rossi.
(Chi vuole, può riflettare su questo anche per 4 dadi. Così si possono ricevere altri 6 punti rossi.)

Lösung/solution/soluzione/résultat/Решение:

 Die Berechnungen für die blaue Aufgabe waren sehr einfach - darf auch mal sein.
Oberfläche für einen Würfel. A=6a² --> A= 216 cm²
Volumen für einen Würfel. V=a³ --> V=216cm³
Da sich die Würfel nicht überdecken, sind die obigen Ergebnisse einfach nur mit 3 bzw. 4 zu multiplizieren.
Meine Lösung für rot, sollte jemand feststellen, dass dort doch trotz sorgältiger Prüfung etwas doppelt sein bzw. etwas fehlen sollte,  bitte an Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein! schreiben, danke schon mal.
Paulchen und calvin haben die Lösung noch mal genau geprüft, vielen Dank. So reduzierte die Anzahl der Möglichkeiten leider um eine.
Die vergegebenen Punkte werden noch mal geprüft.
Wie das Leben so spielt, da hat der Frank R. doch noch eine 20. Lösung entdeckt, super. Danke auch an die Testerin Magalene.

--> pdf <--


Aufgabe 6

702. Wertungsaufgabe

„Schau mal mein zauberhaftes Sechseck an“, sagte Maria zu Bernd.

702 

„Was ist denn daran zauberhaft? Wenn ich das richtig sehe, ist das eine Zusammensetzung aus einem Quadrat ABCD und einem rechtwinkligen Dreieck BEF, wobei BE und EF gleichlang sind.“ „Das hast du richtig erkannt.“
Wie groß sind Umfang und Flächeninhalt des Sechsecks, wenn AB = 10 cm und BE = 2 cm groß sind? 4 blaue Punkte.
Nun die Zauberei: Ein Quadrat WXYZ ist zu finden. Der Flächeninhalt des Quadrates WXYZ ist genau so groß wie der Flächeninhalt des Sechsecks ABEFCD, und nur ein Eckpunkt von WXYZ liegt außerhalb des Sechsecks. Wie geht das? 4 rote Punkte.

Termin der Abgabe 10.02.2022. Срок сдачи 10.02.2022. Ultimo termine di scadenza per l´invio è il 10.02.1922. Deadline for solution is the 10th. February 2022. Date limite pour la solution 10.02.2022. Soluciones hasta el 10.02.2022. Beadási határidő 2022.02.10. 截止日期: 2022.02.10 – 请用徳语或英语回答

chin

第702题

“看看我的魔法六边形,”玛丽雅对伯恩德说。

702


“这有什么神奇的?如果我没理解错的话,这是一个正方形ABCD和一个直角三角形BEF的组合,其中BE 和EF 的长度相等。”
“完全正确。”

当 AB = 10cm , BE = 2cm ,六边形的周长和面积是多少? 4个蓝点

现在魔法来喽:找到一个正方形WXYZ,使正方形WXYZ的面积正好和六边形ABEFCD的面积相等,并且正方形WXYZ只有一个顶点位于六边形之外。
那么怎么做呢? 4个红点。

截止日期: 2022.02.10 – 请用徳语或英语回答

russ

«Посмотри на мой очаровательный шестиугольник», — сказала Мария Бернду.

702

«Что в этом очаровательного? Если я это правильно вижу, это комбинация квадрата ABCD и прямоугольного треугольника BEF, где BE и EF имеют одинаковую длину.»
«Ты это правильно узнал.»
Каковы периметр и площадь шестиугольника, если АВ = 10 см и ВЕ = 2 см? 4 синих очка.
Теперь волшебство: Найти квадрат WXYZ. Площадь квадрата WXYZ такая же, как площадь шестиугольника ABEFCD и только одна вершина от WXYZ лежит вне шестиугольника. Каким образом это возможно? 4 красных очка.

hun

„Nézd mára csodás hatszögemet!” – kiáltotta Mária Berndnek.

702

„Mi ebben olyan csodás? Ha jól látom, egy ABCD négyszöget és egy jobbszögű BEF háromszöget szerkesztettél össze, ahol BE és EF egyenlő hosszú.” „Ezt helyesen felismerted.”
Mekkora a kerülete és a felülete a hatszögnek, ha AB = 10 cm und BE = 2 cm? 4 kék pont
Még egy varázslat: található egy WXYZ négyszög is! Ennek a WXZY négyszögnek a felülete pontosan akkora, amekkora az ABEFCD hatszögé és csak egy sarokpontja a WXZY-nek helyezkedik el a hatszögön kívül. Hogyan lehetséges ez? 4 piros pont

frz

Regarde mon hexagone magique", dit Maria à Bernd.

702

« Qu'est-ce qu'il y a de si magique là-dedans ? Si je comprends bien, c'est une combinaison d'un carré ABCD et d'un triangle rectangle BEF, où BE et EF sont de longueur égale." "Bien vu."
Quel est le périmètre et l'aire de l'hexagone si AB = 10 cm et BE = 2 cm pour 4 points bleus.
Maintenant la magie : trouver un carré WXYZ. L'aire du carré WXYZ est la même que l'aire de l'hexagone ABEFCD et un seul sommet de WXYZ se trouve à l'extérieur de l'hexagone. Comment est-ce possible ? 4 points rouges.

esp

"Mira mi hexágono mágico", dijo María a Bernd.

702

"¿Qué tiene de mágico? Si lo veo bien, es una composición de un cuadrado ABCD y un triángulo rectángulo BEF, donde BE y EF son de igual longitud".  "Tienes razón".
¿Cuál es el perímetro y el área del hexágono si AB = 10 cm y BE = 2 cm? 4 puntos azules.
Ahora la magia: hay que encontrar un cuadrado WXYZ. El área del cuadrado WXYZ es exactamente tan grande como el área del hexágono ABEFCD y sólo un punto de la esquina de WXYZ se encuentra fuera del hexágono. ¿Cómo funciona esto? 4 puntos rojos.

en

"Look at my magical hexagon," Maria told Bernd.

702

"What's magical about it? If I see it correctly, it's a composition of a square ABCD and a right triangle BEF, where BE and EF are of equal length." "You've got that right."
What is the perimeter and area of the hexagon if AB = 10 cm and BE = 2 cm 4 blue points.
Now the magic: A square WXYZ is to be found. The area of the square WXYZ is exactly the same as the area of the hexagon ABEFCD and only one corner point of WXYZ lies outside the hexagon. How does this work? 4 red points

Deadline for solution is the 10th. February 2022.

it

“Guarda il mio esagono magico.”, Maria diceva a Bernd.

702

“E cosa ci sarebbe di magico? Se lo vedo bene è solo una composizione di un quadrato ABCD ed un triangolo rettangolare BEF, nel quale BE e EF hanno la stessa lunghezza.” – “Hai capito bene.”
Quale sono la circonferenza e la superficie dell’esagono con AB = 10 cm e BE = 2 cm? 4 punti blu
E poi la magia: Si deve trovare un quadrato WXYZ che abbia la stessa superficie dell’esagono ABEFCD nel modo che solo una vertice di WXYZ stia fuori dell’esagono. Come funziona? 4 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

 Erst einmal als Animation und so: http://www.walser-h-m.ch/hans/Miniaturen/S/Sechseck_Quadrat/Sechseck_Quadrat.html

Komplette Lösung von Günter S., danke --> pdf <--


Aufgabe 7

703. Wertungsaufgabe

Apfelsinenaufgabe

In diesem Jahr helfen Maria, Lisa, Bernd und Mike bei der Apfelsinenernte in Paterno (Sizilien). Die Einteilung durch Nirav hatte dazu geführt, dass die Mädchen eine andere Sorte pflückten als die Jungen. (Im Bild sind die Apfelsinen der Jungen rötlich dargestellt.)

703

Weil noch Zeit bis zum Verpacken blieb, hatten die vier begonnen Muster zu legen.
Wie viele Apfelsinen brauchen, die Jungs bzw. die Mädchen für das Muster 5? 3 blaue Punkte.
Für das wievielte Muster braucht man zum ersten Mal eine vierstellige Anzahl von Apfelsinen, wenn man nicht zwischen den Sorten unterscheidet? 3 rote Punkte

Termin der Abgabe 03.03.2022. Срок сдачи 03.03.2022. Ultimo termine di scadenza per l´invio è il 03.03.1922. Deadline for solution is the 3th. March 2022. Date limite pour la solution 03.03.2022. Soluciones hasta el 03.03.2022. Beadási határidő 2022.03.03. 截止日期: 2022.03.03 – 请用徳语或英语回答

chin

第703题 橘子问题

今年玛丽雅、丽莎、贝恩德和迈克在西西里岛的帕泰尔诺帮忙采收橘子。
尼拉夫(Nirav)分配男孩儿们和女孩儿们采摘不同品种的橘子。(在图中男孩子儿们的橘子是用红色标注的)。

703

因为距离打包还有一段时间,四个人开始摆出一些模型。

请问男孩儿们和女孩儿们还需要多少个橘子才能摆出模型5? 3个蓝点
如果不区分品种的话,那么第多少个模型的橘子的数量才能达到一个四位数? 3个红点

截止日期: 2022.03.03 – 请用徳语或英语回答

russ

Aпельсиновая задача

В этом году Мария, Лиза, Бернд и Майк помогают собирать урожай апельсинов в Патерно (Сицилия). Распределение Нирава привело к тому, что девушки рвали другой сорт, чем мальчики. (На картинке апельсины мальчиков красноватые.)

703

Потому что до упаковки ещё оставалось время, четверо начало выкладывать узоры.
Сколько апельсинов нужны мальчикам и девушкам для узора 5? 3 синих очка.
Для какого узора в первый раз понадобится четырёхзначное число апельсинов, если вы не различаете сорта? 3 красных очка

hun

Idén Mária, Lisa, Bernd és Mike narancsot szüretelnek Paternoban (Szicília). Nirav beosztása ahhoz vezetett, hogy a lány más fajtát szedett, mint a fiúk. (Az ábrán a fiúk narancsa vörös).

703

Mivel a csomagolásig maradt még idő, ők négyen elkezdtek mintákat kirakni. Mennyi narancsra van szüksége a fióknak és a lánynak az 5-ös mintához? 3 kék pont
A hányadik mintához kell először négyszámjegyű szám a narancsokból, ha a az ember a fajták közt nem tesz különbséget. 3 piros pont

frz

Cette année, Maria, Lisa, Bernd et Mike aident à la récolte des oranges à Paterno (Sicile). L’organisation de Nirav avait conduit les filles à choisir une variété plutôt que les garçons. (Sur la photo, les oranges des garçons sont rougeâtres.)

703

Parce qu'il y avait encore du temps avant l'emballage, les quatre échantillons commencés devaient disposer.
De combien d'oranges les garçons et les filles ont-ils besoin pour le motif 5 ? 3 points bleus.
A partir du combientième motif a-t ’on besoin d'un nombre d'oranges à quatre chiffres pour la première fois, si on ne fait pas la différence entre les variétés ? 3 points rouges

esp

Este año Maria, Lisa, Bernd y Mike están ayudando en la cosecha de naranjas en Paterno (Sicilia). La división por parte de Nirav había hecho que las chicas eligieran una variedad diferente a la de los chicos. (En la imagen, las naranjas de los chicos aparecen en rojo).

703

Como todavía había tiempo antes de hacer las maletas, los cuatro habían empezado a poner patrones.
¿Cuántas naranjas necesitan los chicos y chicas para el patrón 5? 3 puntos azules.
Si no se distingue entre las variedades, ¿para qué patrón (patrón X) se necesita por primera vez un número de cuatro cifras de naranjas? 3 puntos rojos.

en

Orange task
This year Maria, Lisa, Bernd and Mike are helping to pick oranges in Paterno (Sicily).

703

The division by Nirav had resulted in the girls picking a different variety than the boys. (In the picture, the boys' oranges are reddish).
Because there was still time before packing, the four had started to lay out patterns.
How many oranges do the boys and the girls need for pattern 5? 3 blue points.
From which pattern on will you, for the first time, need a four digit amount of oranges, if you do not distinguish between the varieties? 3 red points

Deadline for solution is the 3th. March 2022.

it

Quest‘anno, Maria, Lisa ,Bernd e Mike aiutano alla raccolta delle arancie a Paterno (Sicilia). Nirav li aveva aggruppati nel modo che I maschi raccoltavano un’altro tipo di arancie che le femmine. (Nel disegno i punti rossastri rappresentano le arancie dei maschi.)

703

Come passatempo fino al confezionamento, i quattro iniziavano a formare dei disegni con le arancie.
Quante arancie servono ai maschi / alle femmine per il disegno 5? – 3 punti blu
Per il quale disegno si deve per la prima volta usare un numero di quattro ciffre (non facendo differenza tra i tipi diversi di arancie)? 3 punti rossi

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Heloh, danke. --> pdf <--. Schön auch, die Lösung von Karlludwig, danke. --> pdf <--


Aufgabe 8

704. Wertungsaufgabe

deu

Maria, Bernd, Lisa und Mike spielen ein verrücktes Spiel. Nach jeder Runde werden jeweils 180 Punkte verteilt. Der Sieger bekommt ein Drittel der Punkte. Der Zweite bekommt 10 Punkte weniger als der Sieger. Der Dritte bekommt 10 Punkte weniger als Zweite. Nach 10 Runden hatte Bernd keine Lust mehr, da er immer Letzter geworden war. Wie viele Punkte hat Bernd bekommen? 3 blaue Punkte
Das Verrückte an dem Spiel aber war der „Würfel“. Er war außen kugelförmig und im Inneren hörte man eine zweite Kugel klappern. Außen waren die Zahlen 1 bis 6 gleichmäßig verteilt. Der innere Aufbau der Kugel war so beschaffen, dass nach dem Ausrollen immer eine der Zahlen 1 bis 6 auch oben lag – wie ein echter Würfel, bloß eben rund. Es ist eine möglichst einfache Variante für den inneren Aufbau der Kugel zu finden. 4 rote Punkte.

Termin der Abgabe 10.03.2022. Срок сдачи 10.03.2022. Ultimo termine di scadenza per l´invio è il 10.03.2022. Deadline for solution is the 10th. March 2022. Date limite pour la solution 10.03.2022. Soluciones hasta el 10.03.2022. Beadási határidő 2022.03.10. 截止日期: 2022.03.10 – 请用徳语或英语回答

chin

第704题

玛丽雅、贝恩德、丽莎和迈克在玩儿一个疯狂的游戏。

每轮游戏结束后都会获得180个积分。其中获胜者得到三分之一的积分;第二名获得的积分比第一名少10个;第三名又比第二名少10个积分。

贝恩德10轮之后他就没兴趣了,因为他总是最后一名。

那么贝恩德得到了多少个积分? 3个蓝点

这个游戏最疯狂的地方是“骰子”。它的外部是球形的,人们可以听到里边还有一个球在滚动。 数字从1到6被均匀地分布在骰子的外部。

球体的内部结构是这样的:在球滚动之后数字从1到6中总有一个是朝上的,就像一个真正的骰子一样,只是它是圆的而已。

对于球体的内部结构请找到一种尽可能简单的构造。 4个红点

截止日期: 2022.03.10 – 请用徳语或英语回答

russ

Мария, Бернд, Лиза и Майк играют в сумасшедшую игру. После каждого тура начисляются 180 очков. Победитель получает треть очков. Второй получает на 10 очков меньше чем победитель. Третий получает на 10 очков меньше чем второй. После 10 туров Бернду уже не хотелось, потому что он всегда стал последним. Сколько очков получил Бернд? 3 синих очка
Но самое сумасшедшее в игре было «куб». Снаружи он был сферическим, а внутри можно было услышать стук второго шара. Цифры от 1 до 6 были равномерно распределены снаружи. Внутреннее строение шара было таково, что после того, как его выкатывали, одно из чисел от 1 до 6 всегда оказывалось сверху — как у настоящей игральной кости, только кругла. Необходимо найти возможно простой вариант внутреннего строения шара.
4 красных очка.

hun

Mária, Bernd, Lisa és Mike egy vad játékot játszanak. Minden kör után egyenként 180 pont kerül elosztásra. A győztes kapja a pontok harmadát. A második 1ö ponttal kap kevesebbet, mint a győztes. A harmadik ugyancsak 10 ponttal kevesebbet, mint a második. 10 kör után Berndnek nincs több kedve játszani, mert mindig utolsó volt. Hány pontot kapott Bernd? 3 kék pont
A legdurvább azonban a „dobókocka” volt a játékban. Ez kívülről gömbölyű és belül hallani lehet egy második gömböt zörögni. Kívül a számok 1-től 6-ig egyenlően vannak elosztva. A belső gömb olyan volt, hogy kicsavarva mindig egy szám maradt 1-től 6-ig fent, mint egy igazi dobókockánál, csak ez kerek. Találjon egy lehetőleg egyszerű változatot a golyó belső felépítésére. 4 piros pont

frz

Maria, Bernd, Lisa et Mike jouent à un jeu fou. 180 points sont attribués après chaque manche. Le gagnant obtient un tiers des points. La deuxième place obtient 10 points de moins que le vainqueur. Le troisième obtient 10 points de moins que le deuxième. Après 10 tours, Bernd n'en avait plus envie car il avait toujours fini dernier. Combien de points Bernd a-t-il obtenus ? 3 points bleus
Mais la chose la plus folle du jeu était le "cube". C'était sphérique à l'extérieur et à l'intérieur on pouvait entendre une deuxième balle cliqueter. Les chiffres de 1 à 6 étaient uniformément répartis à l'extérieur. La structure interne de la balle était telle qu'après son déploiement, l'un des chiffres de 1 à 6 était toujours au-dessus - comme un vrai dé, juste rond. La variante la plus simple possible pour la structure interne du ballon est à trouver. 4 points rouges.

esp

María, Bernd, Lisa y Mike juegan a un juego loco. Después de cada ronda, se reparten 180 puntos. El ganador obtiene un tercio de los puntos. El segundo obtiene 10 puntos menos que el ganador. El tercero recibe 10 puntos menos que el segundo. Después de 10 rondas, Bernd no tenía ganas de seguir jugando porque siempre quedaba último. ¿Cuántos puntos consiguió Bernd? 3 puntos azules.
Pero lo más loco del juego era el "dado". Era esférico por fuera y en su interior se oía el traqueteo de una segunda bola. En el exterior, los números del 1 al 6 estaban distribuidos uniformemente. La estructura interna de la bola era tal que, después de rodar, uno de los números del 1 al 6 quedaba siempre en la parte superior, como un dado real, sólo que redondo. La tarea consiste en encontrar la variante más sencilla posible para la estructura interna del dado esférico. 4 puntos rojos.

en

Maria, Bernd, Lisa and Mike play a crazy game. After each round, 180 points are distributed. The winner gets one third of the points. The second gets 10 points less than the winner. The third gets 10 points less than the second. After 10 rounds, Bernd didn't feel like playing anymore because he always came last. How many points did Bernd get? 3 blue points
But the craziest thing about the game was the "cube". It was spherical on the outside and inside you could hear a second ball rattling. On the outside, the numbers 1 to 6 were evenly distributed. The inner structure of the ball was such that after rolling out, one of the numbers 1 to 6 were always on top - like a real dice, only round. It is to find the simplest possible variant for the inner structure of the sphere. 4 red points.

it

Maria, Bernd, Lisa e Mike si stanno divertendo con un gioco pazzesco. Dopo ogni partita vengono divisi 180 punti. Il vincente riceve un terzo dei punti. Il secondo riceve 10 punti meno del vincente. Il terzo riceve 10 punti meno del secondo. Dopo 10 partite Bernd, essendo sempre stato ultimo, non aveva più voglia di giocare. Quanti punti aveva ricevuto? – 3 punti blu La cosa più pazzesca era però il „dado”. Di fuori aveva la forma di una sfera e dentro si sentiva strepitare un’altra sfera. Sulla superficie erano disposti i numeri 1 a 6 in modo complletamente simmetrico. Da dentro, il „dado” sferico era talmente costruito che quando smetteva di rotolare, si vedeva sempre uno dei numeri 1 a 6 in alto – come fa un dado comune. È da trovare la variante più semplice possible per la costruzione dell’interno della sfera. 4 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

Für das Innere des Kugelwürfels gibt es natürlich verschiedene Möglichkeiten. Hier wird die genutzt, die auch bei den "Würfeln" verwendet wird, die man kaufen kann.
Musterlösungen von Magdalene, danke. --> pdf <-- und Paulchen, danke. --> pdf <--


Aufgabe 9

705. Wertungsaufgabe

„Du hast aber viele Geldstücke vor dir liegen“, sagte Bernd zu seiner Mutter. „Das stimmt, es sind alles 2-Cent Stücke und 5-Cent Stücke, damit könnte ich jeden Preis beim Einkauf bezahlen, zumindest bis ich alle Münzen hingegeben habe“, erwiderte sie.
Stimmt die Aussage der Mutter? Es wird davon ausgegangen, dass sie kein Wechselgeld erhält. Für eine vollständige Begründung gibt es 3 blaue Punkte.
Welche Preise könnte man nicht bezahlen - kein Wechselgeld, wenn die Mutter nur 10-Cent und 7-Cent Stücke hätte. (Klar die 7-Cent Stücke gibt es nicht, aber man kann ja mal so tun.) Für eine vollständige Begründung gibt es 3 rote Punkte.

Termin der Abgabe 17.03.2022. Срок сдачи 17.03.2022. Ultimo termine di scadenza per l´invio è il 17.03.1922. Deadline for solution is the 17th. March 2022. Date limite pour la solution 17.03.2022. Soluciones hasta el 17.03.2022. Beadási határidő 2022.03.17. 截止日期: 2022.03.17 – 请用徳语或英语回答

chin

第705题

“你面前放这么多硬币。”贝恩德对他的妈妈说。
“对呀,都是2欧分和5欧分的,这样我在买东西时不同的价格都能直接支付,直到我把所有硬币花光,”贝恩德的妈妈回答道。
假设她没有收到找钱,贝恩德妈妈的说法正确吗?给出一个充分的理由可以得到 3个蓝点。
如果贝恩德的妈妈只有10欧分和7欧分硬币的话,也没有找钱,那么哪个价格是不能支付的?(当然了,是没有7欧分的硬币的,你假装有就好了。)
给出一个充分理由可以得到3个红点。
截止日期: 2022.03.17 – 请用徳语或英语回答

rus

«Ой как много монет перед тобой», — сказал Бернд своей матери. «Да, и все монеты по 2 и 5 центов. Я могу ими заплатить закупку любой цены, по крайней мере, пока не отдала все монеты», — ответила она.
Верно ли заявление матери? Предполагается, что она не получает сдачи. 3 синих очка для полного обоснования.
Какие цены нельзя было бы заплатить без сдачи, если у матери были бы только 10-центовые и 7-центовые монеты? (Конечно, 7-центовых монет нет, но можно сделать вид, что есть.) Полное обоснование принесёт 3 красных очка.

hun

„Előtted aztán sok pénzdarab hever.” – monda Bernd az anyjának. „Igen és ezek mind 2 és 5 centesek, ezekkel bármilyen értéket ki tudnék a boltban fizetni, legalábbis, ha minden érmét odaadnám.” – válaszolta.
Igaz az anyuka kijelentése? Abból kell kiindulni, hogy nem kap váltópénzt. A teljes magyarázat 3 kék pont.
Milyen értéket nem tudna kifizetni, váltópénz nélkül, ha anyának csak 10 és 7 centesei lennének. Persze, nincs 7 centes, csak tegyük fel. A teljes magyarázat 3 piros pont.

frz

"Mais tu as beaucoup de pièces devant toi", a dit Bernd à sa mère. "C'est vrai, ce sont toutes des pièces de 2 cents et de 5 cents, donc je pourrais payer n'importe quel prix en faisant des courses, du moins jusqu'à ce que j’aie donné toutes les pièces", a-t-elle répondu.
La déclaration de la mère est-elle correcte ? On suppose qu'elle ne reçoit pas de monnaie. 3 points bleus pour une justification complète.
Quels prix ne pouvaient pas être payés - aucun change si la mère n'avait que des pièces de 10 cents et 7 cents. (Bien sûr, il n'y a pas de pièces de 7 centimes, mais vous pouvez prétendre que c'est le cas.) 3 points rouges sont donnés pour une justification complète.

esp

"Tienes muchas monedas por delante", le dijo Bernd a su madre. "Así es, todo son monedas de 2 y 5 céntimos, podría pagar cualquier precio con ellas cuando vaya a comprar, al menos hasta que haya dado todas las monedas", respondió.
¿Es cierta la declaración de la madre? Se supone que no recibe cambio. Se reciben 3 puntos azules por una explicación completa.
Qué precios no se podrían pagar (no cambio) si la madre sólo tuviera monedas de 10 centavos y 7 centavos. (Claro, las piezas de 7 céntimos no existen, pero puedes fingir.) Para una justificación completa, se reciben 3 puntos rojos.

en

"You have a lot of coins in front of you," Bernd told his mother. "That's right, they are all 2-cent pieces and 5-cent pieces, I could pay any price with them when I go shopping, at least until I have given all the coins," she replied.
Is the mother's statement true? It is assumed that she does not receive change. You will get 3 blue points for a complete explanation.
What prices could not be paid - no change, if the mother only had 10-cent and 7-cent pieces? (Sure, the 7-cent pieces don't exist, but you can pretend.) For a complete justification, you will get 3 red points.

it

„Quanti spiccioli hai messo davanti a te”, Bernd diceva a sua madre. “Vero! Sono tutte monete da 2 centesimi e 5 centesimi. Con essi potrei pagare ogni prezzo che risulta facendo la spesa – almeno finché ho speso tutte le monete”, replicava.
Ammettendo che non riceve soldi di resto, è vero quello che dice la mamma?
Per la spiegazione complete si ricevano 3 punti blu.
Quale prezzi non si potrebbero pagare (sempre senza soldi di resto), se la mamma avesso solo monete di 10 centesimi e 7 centesimi? (Naturalmente monete di 7 centesimi non esitono; ma facciamo finta di sì.
Per la spiegazione complete si ricevano 3 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

Allgemein gilt: Hat man zwei Münzsorten a und b, die teilerfremd sind, so ist die größte nicht darstellbare (bezahlbare Summe) Zahl S mit S = a*b - a - b. Das gilt streng genommen nur für eine unendliche Anzahl für Münzen.
Eine sehr ausführliche Darstellung von Reinhold M., die die Begrenzung der Münzenanzahl einschließt. Vielen Dank.

Jeder Laden kann in seinen Allgemeinen Geschäftsbedingungen eine Obergrenze für die Annahme von Kleingeld festlegen, und auch ohne eine solche Einschränkung kann nach dem Münzgesetz die Annahme von mehr als
50 Geldstücken verweigert werden. Damit wäre der Betrag also eigentlich auf 50 *0,05 = 2,50 bzw. 50 * 0,10 = 5,00 Euro beschränkt. In einem freundlichen Laden aber gilt:

Lemma 1: Ist G der Gesamtwert aller vorhandenen Münzen in Cent, so ist ein Preis P, P ganz mit 0 <= P <= G, genau dann bezahlbar, wenn G-P bezahlbar ist.
Der Beweis ist offensichtlich: G-P ist genau mit den Münzen bezahlbar, die zur Bezahlung von P nicht verwendet wurden.

Lemma 2: Sind p und q teilerfremde positive ganze Zahlen, so entspricht jedem Paar von Restklassen (a mod p, b mod q) genau eine Restklasse c mod pq.
Das ist ein Spezialfall des Chinesischen Restsatzes, den ich nun hier nicht beweisen werde. Ich benutze aber auch nur die folgende offensichtliche Anwendung für 2 und 5 (und später für 7 und 10).

Ist P eine positive ganze Zahl (der zu bezahlende Preis in Cent), so gibt es (eindeutig bestimmte) ganze Zahlen p, q und r mit 0 <= q <= 4, 0 <= r <= 1, so dass
   (1)   P = 10p + 2q + 5r.

Sind andererseits n2 und n5 die Anzahlen der vorhandenen 2- bzw. 5-Cent-Stücke, so gibt es (eindeutig bestimmte) ganze Zahlen a, b, c und d, so dass
   (2)   n2 = 5a + b, a >= 0, 0 <= b <= 4,
   (3)   n5 = 2c + d, c >= 0, 0 <= d <= 1.
Der Gesamtwert G aller vorhandenen Münzen in Cent ist damit
   (4)   G = 2(5a + b) + 5(2c + d) = 10(a + c) + 2b + 5d.

Betrachtet man nun zunächst alle möglichen Werte von (q, r) in (1), so stellt man fest, dass 2q + 5r > 10 für (3, 1), und zwar 11, und für (4, 1), und zwar 13. Dann ist also p < 0 - und folglich für P = 1 und für P = 3 und nach Lemma 1 auch für G-3 und für G-1 keine Münzzuordnung möglich. Weiterhin erkennt man beim Vergleich von (1) und (4) als weitere Bedingungen für die Bezahlbarkeit von P    q <= b oder a >= 1, also allgemein n2 >= 4, und    r <= d oder c >= 1, also allgemein n5 >= 1, was aber beides wegen der Vorhandensein "vieler Geldstücke" als gegeben vorausgesetzt wird.
Weitere Einschränkungen gibt es aber nicht - dann können wir aus dem Vorrat von (4) stets die passende Auswahl für (1) entnehmen.

Also: die Mutter hat nicht ganz recht, vier Beträge (G s. oben) lassen sich nicht bezahlen: 1, 3, G-3 und G-1 Cent. Der Bereich der lückenlos bezahlbaren Beträge reicht (nur) von 4 bis G-4 Cent.
Die Argumentation für die 7- und 10-Cent-Stücke ist vollkommen analog:
Ist P eine positive ganze Zahl (der zu bezahlende Preis in Cent), so gibt es (eindeutig bestimmte) ganze Zahlen p, q und r mit 0 <= q <= 9, 0 <= r <= 6, so dass
   (1')   P = 70p + 7q + 10r.
Sind andererseits n7 und n10 die Anzahlen der vorhandenen 7- bzw. 10-Cent-Stücke, so gibt es (eindeutig bestimmte) ganze Zahlen a, b, c und d, so dass
   (2')   n7 = 10a + b, a >= 0, 0 <= b <= 9,
   (3')   n10 = 7c + d, c >= 0, 0 <= d <= 6.
Der Gesamtwert G aller vorhandenen Münzen in Cent ist damit
   (4')   G = 7(10a + b) + 10(7c + d) = 70(a + c) + 7b + 10d.

Betrachtet man wieder alle möglichen Werte von (q, r) in (1'), so stellt man fest, dass 7q + 10r > 70 für (2, 6), (3, 5), (3, 6), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 3), (6, 4), (6, 5), (6, 6), (7, 3), (7, 4), (7, 5), (7, 6), (8, 2), (8, 3), (8, 4), (8, 5), (8, 6), (9, 1), (9, 2), (9, 3), (9, 4), (9, 5), (9, 6) (in dieser Reihenfolge 74, 71, 81, 78, 88, 75, 85, 95, 72, 82, 92, 102, 79, 89, 99, 109, 76, 86, 96, 106, 116, 73, 83, 93, 103, 113, 123), so dass dann wegen p < 0 für die entsprechenden 27 Werte P = 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 22, 23, 25, 26, 29, 32, 33, 36, 39, 43, 46, 53 keine Münzzuordnung möglich ist.

Weiterhin erkennt man beim Vergleich von (1') und (4') als weitere Bedingungen für die Bezahlbarkeit von P    q <= b oder a >= 1, also allgemein n7 >= 9,
und
   r <= d oder c >= 1, also allgemein n10 >= 6, was aber beides wegen der Vorhandensein "vieler Geldstücke" als gegeben vorausgesetzt wird.
Weitere Einschränkungen gibt es aber nicht - dann können wir aus dem Vorrat von (4') stets die passende Auswahl für (1') entnehmen.

Also: die Mutter hätte dann noch weniger recht, ganze 54 Beträge (G s.oben) lassen sich nicht bezahlen: 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 22, 23, 25, 26, 29, 32, 33, 36, 39, 43, 46, 53 sowie nach Lemma 1 G-53, G-46, G-43, G-39, G-36, G-33, G-32, G-29, G-26, G-25, G-23, G-22, G-19, G-18, G-16, G-15, G-13, G-12, G-11, G-9, G-8, G-6, G-5, G-4, G-3, G-2, G-1 Cent. Der Bereich der lückenlos bezahlbaren Beträge reicht (nur) von 54 bis G-54 Cent.

 


Aufgabe 10

706. Wertungsaufgabe

Hello, ¡Hola, 你好, Hallo, Olá, Bonjour, Ciao, привет, Helló, Guten Tag

deu

706

„Für dieses zauberhafte Oval habe ich nach dem Zeichnen der beiden gleichseitigen Dreiecke (a= 4 cm) nur noch den Zirkel benutzt. Okay, die Seiten der Dreiecke musste ich noch verlängern“, sagte Maria zu Lisa. „Wenn ich das richtig sehe, dann sind die Punkte A und B Mittelpunkte der Kreise, die Punkte C und D die Mittelpunkte der Kreisbögen.“

„Stimmt genau.“

 706 voll

Wie groß ist der Umfang des Ovals? 6 blaue Punkte Für die Berechnung des Flächeninhalts des Ovals gibt es 6 rote Punkte.

Termin der Abgabe 31.03.2022. Срок сдачи 31.03.2022. Ultimo termine di scadenza per l´invio è il 31.03.2022. Deadline for solution is the 31th. March 2022. Date limite pour la solution 31.03.2022. Soluciones hasta el 31.03.2022. Beadási határidő 2022.03.31. 截止日期: 2022.03.31 – 请用徳语或英语回答

chin

706题

706

“在画出两个等边三角形后(边长a=4厘米),我只需要再使用圆规就可以画出这个神奇的椭圆。对,我必须还要把三角形的边延长。”玛丽雅对丽莎说。

“如果我没看错的话,点A 和 点B是圆的圆心;点C 和 点D是圆弧的中点。”

“没错。”

706 voll

那么椭圆的周长是多少? 6个蓝点。

求出椭圆的面积可以得到6个红点。

截止日期: 2022.03.31 – 请用徳语或英语回答

russ

706

«После рисования двух равносторонних треугольников (а = 4 см) я использовала лишь циркуль для этого удивительного овала. Ладно, мне пришлось ещё удлинить стороны треугольников», — сказала Мария Лизе. «Если я права, точки A и B — центры окружностей, точки C и D — центры круговых дуг».

"Точно."

706 voll

Чему равен периметр овала? 6 синих очков

Для вычисления площади овала получишь 6 красных очков.

hun

706

„Ehhez a varázslatos oválishoz a két egyenlő oldalú háromszög (a=4 cm) megszerkesztése után csak a körzőt használtam. Jó, a háromszög oldalait még meg kell hosszabbítanom.” – mondta Mária Lisának.
„Ha jól látom, az A és a B pont a körök középpontjai. A C és a D pontok pedig középpontjai a köríveknek.”
„Pontosan.”

706 voll

Mekkora a kerülete az oválisnak? 6 kék pont

Az ovális területének kiszámítása 6 piros pontot ér.

frz

706

« Après avoir dessiné les deux triangles équilatéraux (a= 4 cm) je n'ai utilisé le compas que pour cet ovale magique. D'accord, je dois encore allonger les côtés des triangles », a déclaré Maria à Lisa. "Si j'ai raison, les points A et B sont les centres des cercles. Les points C et D sont les centres des arcs." "Exactement."

706 voll

Quel est le périmètre de l'ovale ? 6 points bleus
Il y aura 6 points rouges pour calculer l'aire de l'ovale.

esp

706

"Para este encantador óvalo, después de dibujar los dos triángulos equiláteros (a= 4 cm), sólo he utilizado el compás. Bien, todavía tengo que extender los lados de los triángulos", le dijo María a Lisa. "Si lo veo bien, los puntos A y B son los puntos medios de los círculos. Los puntos C y D son los puntos medios de los arcos". "Así es".

706 voll

¿Cuál es la circunferencia del óvalo? 6 puntos azules Para calcular el área del óvalo, se reciben 6 puntos rojos.
en

706

"For this enchanting oval, after drawing the two equilateral triangles (a= 4 cm), I only used the compass. Okay, I still have to extend the sides of the triangles," Maria told Lisa. "If I see it correctly, points A and B are the centres of the circles. Points C and D are the centres of the arcs." "That's right."

706 voll

What is the circumference of the oval? 6 blue points.
For calculating the area of the oval, you will get 6 red points.
Deadline for solution is the 31th. March 2022.

it

706

“Per disegnare questo ovale incantevole, dopo aver costruito i due triangoli equilateri (a = 4 cm), ho solo usato il compass. Vabbè, dovevo anche prolungare i lati dei triangoli.”, Maria diceva a Lisa. “Se ho capito bene, A e B sono I centri dei cerchi. C e D I centri dei archi circolari.” “Esatto!”

706 voll

Qual’è la circonferenza dell’ovale blu? 6 punti blu.
Per il calcolo dell’area dell’ovale vengono dati 6 punti rossi.

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Gerhard Palme, danke. Diese Lösung enthält auch einen Bezug zur Architektur, echt gut. --> pdf <--


Aufgabe 11

707. Wertungsaufgabe

 Hello, ¡Hola, 你好, Hallo, Olá, Bonjour, Ciao, привет, Helló, Guten Tag

deu

 707

Opa hatte eine Konstruktion mitgebracht, die wie drei Monde aussah, zumindest dann, wenn man sich das zweite Bild anschaut.
„Wie hast du das konstruiert?“, fragt Bernd.
„Hier könnt ihr die Hinweise lesen“, erwiderte der Opa.
Zu Beginn einen Kreis mit dem Mittelpunkt M und einem Radius von 4 cm zeichnen. A, B, C, D, E und F bilden ein gleichseitiges Sechseck. Da kann man schon mal die roten Kreisbögen nutzen. 3 sind noch zu sehen, die anderen 3 sind entfernt. Jetzt werden die Strecken wie im Bild ersichtlich eingezeichnet.
Die grünen Kurven sind Halbkreise mit den Mittelpunkten H, G bzw. I.
Wie lang sind die grünen und roten Bögen zusammen? 6 blaue Punkte
In dem zweiten Bild erkennt man einen grünen, einen roten und einen blauen Mond. Deswegen nannte der Opa auch das Bild so. Die Punkte X, Y und Z bilden ein Dreieck aus Bögen. Wie groß sind Umfang und Flächeninhalt dieses besonderen Dreiecks? 6 rote Punkte

707 2

Termin der Abgabe 07.04.2022. Срок сдачи 07.04.2022. Ultimo termine di scadenza per l´invio è il 07.04.2022. Deadline for solution is the 7th. April 2022. Date limite pour la solution 07.04.2022. Soluciones hasta el 07.04.2022. Beadási határidő 2022.04.07. 截止日期: 2022.04.07 – 请用徳语或英语回答

chin

第707题

707

 爷爷带来了一张图片。这张图看起来就像三个月牙,至少在人们看到第二张图片的时候。
“你是怎么画出来的?”贝恩德问。
“你们可以在这里读一下说明。”爷爷回答道。
先画一个以点M为圆心、半径为4厘米的圆。由A、B、C、D、E、F构成一个等边六边形。
人们在这儿使用了红色的圆弧。现在还可以看到 3 个,另外 3 个已被擦除。 现在把这些线画出来,就像图中所标注的那样。
绿色的弧线是分别以点H、G和I为圆心的半圆。
那么绿色弧线和红线弧线一共多长? 6个蓝点
在第二张图中人们能看到绿色、红色和蓝色的月牙。所以爷爷以此来命名这张图。点X、Y和Z形成一个弧形的三角形。
那么这个特别的三角形的周长和面积是多少? 6个红点

707 2

截止日期: 2022.04.07 – 请用徳语或英语回答

russ

707

Дедушка привёз конструкцию, похожую на три луны, по крайней мере, если посмотреть на вторую картинку.
«Как ты это построил?» — спрашивает Бернд.
«Здесь вы можете прочитать указания», — ответил дедушка.
Начните с рисования круга с центром М и радиусом 4 см. A, B, C, D, E и F образуют равносторонний шестиугольник. При этом можно использовать красные круговые дуги. 3 дуги всё ещё видны, остальные 3 удалены. Теперь рисуют отрезки, как показано на рисунке.
Зелёные кривые — это полукруги с центрами в точках H, G и I соответственно.
Какова длина зелёных и красных дуг вместе взятыми? 6 синих очков
На второй картинке вы видите зелёную, красную и синюю луну. Вот почему дедушка так назвал картину. Точки X, Y и Z образуют треугольник из дуг. Каковы периметр и площадь этого особенного треугольника? 6 красных очков

707 2

hun

707

Nagyapa hozott egy szerkesztést, ami úgy néz ki, mint három hold, legalábbis, ha a második ábrát megnézzük.
„Hogyan szerkesztetted meg? „– kérdezte Bernd.
„Itt olvashatjátok az utasításokat hozzá.” – válaszolta Nagyapa.
Először egy 4 cm átmérőjű kört kell az M középpont köré rajzolni. Az A, B, C, D és F egy egyenlő oldalú hatszöget képeznek. Ekkor lehet a piros köríveket használni. Ezekből 3 látható, a másik 3-t már eltávolították. Most rajzoljuk be a szakaszokat a képen látható módon.
A zöld görbék félkörívek H, G és I középpontok körül.
Milyen hosszúak a zöld és piros ívek együttesen? 6 kék pont
A második ábrán felismerhető egy zöld, egy piros és egy kék hold. Ezért nevezte így a képet nagyapa. Az X, Y és Z pont háromszöget alkotnak az ívekből. Mekkora a kerülete és a területe ennek a különleges háromszögnek? 6 piros pont

707 2

frz

 707

Grand-père avait apporté une construction qui ressemblait à trois lunes, du moins quand on regarde la deuxième photo.
« Comment as-tu construit cela ? », demande Bernd. "Tu peux lire les instructions ici," répondit grand-père.
Commencez par tracer un cercle de centre M et de rayon 4 cm. A, B, C, D, E et F forment un hexagone équilatéral. Vous pouvez y utiliser les arcs de cercle rouges. 3 sont encore visibles, les 3 autres ont été supprimées. Maintenant, les lignes sont dessinées comme indiqué sur l'image.
Les courbes vertes sont des demi-cercles centrés respectivement sur H, G et I.
Combien de temps les arcs vert et rouge sont-ils ensemble ? 6 points bleus
Sur la deuxième image, vous pouvez voir une lune verte, rouge et bleue. C'est pourquoi grand-père a appelé la photo comme ça. Les points X, Y et Z forment un triangle d'arcs. Quels sont le périmètre et l'aire de ce triangle particulier ? 6 points rouges

707 2

esp

707

El abuelo había traído una construcción que parecía tres lunas, al menos si se mira la segunda foto.
"¿Cómo lo has construido?", pregunta Bernd.
"Aquí puedes leer las pistas", respondió el abuelo.
Para empezar, dibuja un círculo con centro M y radio de 4 cm. A, B, C, D, E y F forman un hexágono equilátero. Puedes usar los arcos rojos. 3 siguen siendo visibles, los otros 3 se han eliminado. Ahora las líneas se dibujan como se muestra en la imagen.
Las curvas verdes son semicírculos con los centros H, G e I respectivamente.
¿Qué longitud tienen los arcos verde y rojo juntos? 6 puntos azules.
En la segunda imagen se puede ver una luna verde, una roja y una azul. Por eso el abuelo llamó así a la foto. Los puntos X, Y y Z forman un triángulo de arcos. ¿Cuál es el perímetro y el área de este triángulo particular? 6 puntos rojos

707 2

en

 707

Grandpa had brought a construction that looked like three moons, at least if you look at the second picture.
"How did you construct that?" asked Bernd.
"Here you can read the clues," replied the grandpa.
To begin with, draw a circle with centre M and a radius of 4 cm. A, B, C, D, E and F form an equilateral hexagon. You can use the red arcs. 3 are still visible, the other 3 are removed. Now the lines are drawn in as shown in the picture.
The green curves are semicircles with the centres H, G and I respectively.
How long are the green and red arcs together? 6 blue points
In the second picture you can see a green, a red and a blue moon. That's why grandpa called the picture that way. The points X, Y and Z form a triangle of arcs. What is the perimeter and area of this particular triangle?

6 red points

707 2


Deadline for solution is the 7th. April 2022.

it

 707

707
Il nonno aveva portato una costruzione che sembrava essere composta da tre lune. Questo si vede bene nel
secondo disegno. “Come l’hai costruito?”, chiedeva Bernd. “Ve l’ho descritto in questo manuale”, replicava il
nonno.
Si inizia disegnando un cerchio col raggio 4 cm intorno al centro M.
A, B, C, D, E e F formano un’esagono equilatero. Per trovare questi punti si possono usare gli archi rossi, dei cui
si vedono ancora tre, mentre gli altri tre sono stati tolti. Adesso bisogna disegnare I segmenti che si vedono
nell’ imagine. Gli archi verdi sono semicerchi con I centri H, G e I. Qual’ è la somma di tutti gli archi, verdi più
rossi? punti blu
Nel secondo disegno si vedono una luna verde, una rossa ed una blu. I Punti X, Y e Z formano un triangolo
curvo. Quale sono l’area e la circonferenza di questo triangolo talmente eccezionale? 6 punti rossi

707 2

Lösung/solution/soluzione/résultat/Решение:

Musterlösung von Reinhold M. Danke
beim gleichseitigen Sechseck stimmen die Seitenlänge und der
Umkreisradius, hier r = 4 [cm], überein - Zerlegung in die sechs
gleichseitigen Dreiecke AMF, BMA, CMB, DMC, EMD und FME -, und die
Innenwinkel betragen jeweils 120°. Damit haben also die roten Bögen die
Radien
   rrot = r = 4 [cm]
und die Mittelpunktswinkel
   wrot = 120°
und folglich die Bogenlängen
   brot = 2 Pi rrot wrot/360° = 8/3 Pi [cm].
Weiter haben die gleichseitigen Dreiecke AMF usw. mit der Seitenlänge r
= 4 [cm] die Höhen
   h = 1/2 Wurzel(3) r = 2 Wurzel(3) [cm]
(bekannt bzw. Pythagoras), so dass die grünen Bögen die Radien
   rgrün = h = 2 Wurzel(3) [cm]
und die Mittelpunktswinkel
   wgrün = 180°
(Halbkreise) und folglich die Bogenlängen
   bgrün = 2 Pi rgrün wgrün/360° = 2 Wurzel(3) Pi [cm]
haben. Damit beträgt die im ersten Teil gesuchte Gesamtlänge L der
jeweils drei roten und grünen Bögen
   L = 3 (brot + bgrün) = (8 + 6 Wurzel(3)) Pi [cm],
d.h. ca. 57,7811 cm.

Im zweiten Teil nun wurde X = H, Y = G und Z = I gesetzt, so dass X, Y
und Z geradlinig verbunden ein gleichseitiges Dreieck mit der Seitenlänge
   h = 2 Wurzel(3) [cm]
(s. oben) bilden - Zerlegung des gleichseitigen Dreiecks ACE in die vier
gleichseitigen Dreiecke AXZ, CYX, EZY und XYZ -, das den Flächeninhalt
   AD = 1/4 Wurzel(3) h^2 = 3 Wurzel(3) [cm^2]
hat (bekannt bzw. Höhe über Pythagoras).
Weiter haben also die Kreisbögen XY, YZ und ZX als Teile der
ursprünglich grünen Bögen die Radien
   rXYZ = rgrün = h = 2 Wurzel(3) [cm]
und die Mittelpunktswinkel
   wXYZ = 60°
und folglich die Bogenlängen
   bXYZ = 2 Pi rXYZ wXYZ/360° = 2/3 Wurzel(3) Pi [cm].
Damit beträgt der Umfang U des Bogendreiecks XYZ
   U = 3 bXYZ = 2 Wurzel(3) Pi [cm],
d.h. ca. 10,8828 cm (was natürlich = bgrün ist).

Die Flächeninhalte AK der Kreissektoren XYZ (X Mittelpunkt, YZ Bogen)
usw. schließlich betragen
   AK = Pi rXYZ^2 wXYZ/360° = 2 Pi [cm^2],
so dass der Flächeninhalt A des Bogendreiecks XYZ - in der Summe der
Flächeninhalte der drei Kreissektoren ist das geradlinige Dreieck
dreimal enthalten -
   A = 3 AK - 2 AD = 6 (Pi - Wurzel(3)) [cm^2]
beträgt, d.h. ca. 8,4573 cm^2.


Aufgabe 12

708. Wertungsaufgabe

Hello, ¡Hola, 你好, Hallo, Olá, Bonjour, Ciao, привет, Helló, Guten Tag

deu

Buchstabe nach Dürer

708 voll

Opa zeigte zwei Versionen des Buchstabens I. Beide wurden von Dürer gestaltet. Die erste passt zu den Buchstaben, die schon gezeigt wurden (zum Beispiel Aufgabe 600).
Man beginnt mit einem Quadrat ABCD (hier a = 10 cm). Das rote Rechteck hat die Maße a und a/10. Die Kreise haben den Radius a/10.
Wie groß sind Umfang und Flächeninhalt dieser Variante des Buchstaben I? 6 blaue Punkte
Die zweite Variante ist eine sogenannte „Textura“. Das gezeigte Beispiel ist wieder das I. Aus dieser Form lassen sich die anderen Buchstaben des Alphabets dann ableiten.

 708 rot 2

Man beginnt mit dem Quadrat NMOP (hier a = 2 cm). Dann setzt man oberhalb und unterhalb ein weiteres Quadrat an. Deren oberste bzw. unterste Seite wird gedrittelt. An diesen Punkt wird jeweils ein Quadrat (Kantenlänge = a) so gesetzt, dass dessen Diagonalen jeweils senkrecht zu den Seiten den anderen Quadrate verlaufen.
Dann noch zwei Quadrate zur Hilfe ergänzt.
Den genauen Kantenverlauf des Buchstabens erkennt man am letzten Bild. Wie groß sind Umfang und Flächeninhalt dieses I? 10 rote Punkte.

708 rot detail

Termin der Abgabe 14.04.2022. Срок сдачи 14.04.2022. Ultimo termine di scadenza per l´invio è il 14.04.2022. Deadline for solution is the 14th. April 2022. Date limite pour la solution 14.04.2022. Soluciones hasta el 14.04.2022. Beadási határidő 2022.04.14. 截止日期: 2022.04.14 – 请用徳语或英语回答

chin

第708题

丢勒字母

708 voll

爷爷展示了字母I的两个版本。这两个都是由丢勒设计的。

第一种已经展示过了。(例如第600题)

先从一个正方形ABCD (其中 a=10厘米)。红色矩形的长和宽分别为 a 和 a/10。这些圆的半径为 a/10。

在这个版本中的字母I的周长和面积是多少? 6个蓝点

第二个版本是所说的“歌德字体”。给出的例子还是字母I。从这种形式中可以派生出字母表中的其他字母。

708 rot 2

从正方形MNOP开始(a=2厘米),然后在它的上、下部分继续添加一个正方形。

把最上面和最下面的边长分成三部分,在上、下边儿的点上各画出一个正方形(边长=a),要让这个正方形的对角线和其它正方形的边儿垂直。

然后再添加两个作为辅助的正方形。具体的字母边缘走向人们可以在第三张图中看出来。

那么这个字母I的周长和面积是多少? 10个红点

708 rot detail

截止日期: 2022.04.14 – 请用徳语或英语回答

russ

Буква по Дюреру

708 voll

Дедушка показал два варианта буквы I. Оба были разработаны Дюрером. Первый соответствует буквам, которые уже были показаны (например, задача 600).
Начинают с квадратом ABCD (здесь a = 10 см). Красный прямоугольник имеет размеры a и a/10. Окружности имеют радиус a/10.
Каковы периметр и площадь этого варианта буквы I? 6 синих очков
Второй вариант — это так называемая «Текстура». Показанный пример снова является буквой I. Другие буквы алфавита могут быть получены из этой формы.

708 rot 2

Начнём с квадратом NMOP (здесь a = 2 см). Затем добавляется ещё по одному квадрату сверху и снизу. Их верхняя и соответственно нижняя сторона разделяется на трети. Квадрат (длина ребра = а) поставлен в показанной точке так, что его диагонали перпендикулярны сторонам других квадратов.
Для помощи затем ещё добавляются два квадрата.
Точный край буквы виден на последней картинке. Каковы периметр и площадь этой буквы I? 10 красных очков.

708 rot detail

hun

708 voll

Nagyapa az I betű két változatát is megmutatta. Mindkettőt Dürer tervezte. Az első illik a betűkhöz, amiket már bemutattunk (például a 600. feladatban). Egy ABCD négyszöggel kezdjük (itt a = 10 cm). A körök átmérője a/10. Mekkora a kerülete és a területe az I betű ezen változatának? 6 kék pont.

A második változat az úgynvezett "textúra". A bemutatott példa megint az i betű. Ebből az alakból az ábécé többi betűje is leképezhető.

708 rot 2

Az NMOP (itt a = 2 cm) négyzettel kezdjük. Aztán felé és alá helyezünk még egy négyzetet. Ezek felső, illetve alsó oldalát elharmadoljuk. Ezen a ponton úgy helyezünk el egy-egy négyszöget (élhossza = a), hogy ezek átlója merőleges legyen a másik négyszög oldalára. Aztán segtségül még két négyzettel kiegészítjük. A pontos lefutását a betűk élének az utolsó ábrán láthatjuk. Mekkora a kerülete és a területe ennek az I-nek? 10 piros pont.

708 rot detail

frz

Lettre d'après Dürer

708 voll

Grand-père a montré deux versions de la lettre I. Les deux ont été conçues par Dürer. La première correspond aux lettres qui ont déjà été affichées (par exemple exercice 600)
On commence par un carré ABCD (ici a = 10 cm). Le rectangle rouge a pour dimensions a et a/10. Les cercles ont pour rayon a/10.
Quel est le périmètre et l'aire de cette variante de la lettre I. 6 points bleus
La deuxième variante est une soi-disant "Textura". L'exemple montré est à nouveau la lettre I. Les autres lettres de l'alphabet peuvent alors être dérivées de cette forme.

708 rot 2

On commence par le carré NMOP (ici a = 2 cm). Ajoutez ensuite un autre carré au-dessus et au-dessous. Leur face supérieure ou inférieure est divisée en trois. Un carré (longueur d'arête = a) est placé à cet endroit de manière que ses diagonales soient perpendiculaires aux côtés des autres carrés.
Ensuite, on ajoute deux autres carrés pour aider.
Le bord exact de la lettre peut être vu dans la dernière image. Quel est le périmètre et l'aire de cet I ? 10 points rouges.

708 rot detail

esp

Carácter después de Durero

708 voll

El abuelo mostró dos versiones de la letra I. Ambas fueron diseñadas por Durero. El primero coincide con las letras que ya se han mostrado (por ejemplo, la tarea 600).
Se parte de un cuadrado ABCD (aquí a = 10 cm). El rectángulo rojo tiene las dimensiones a y a/10. Los círculos tienen el radio a/10.
¿Cuál es el perímetro y el área de esta variante de la letra I? 6 puntos azules.
La segunda variante es la llamada "textura". El ejemplo mostrado es de nuevo la I. Las demás letras del alfabeto pueden derivarse entonces de esta forma.

708 rot 2

Se comienza con el cuadrado NMOP (aquí a = 2 cm). A continuación, coloca otro cuadrado por encima y por debajo. Los lados superior e inferior están divididos en tercios. En cada uno de estos puntos se coloca un cuadrado (longitud de arista = a) de forma que sus diagonales sean perpendiculares a los lados de los otros cuadrados.
Luego añade dos cuadrados más para ayudar.
El curso exacto de los bordes de la carta puede verse en la última imagen. ¿Cuál es el perímetro y el área de esta I? 10 puntos rojos.

708 rot detail

en

Letter after Dürer

708 voll

Grandpa showed two versions of the letter I. Both were designed by Dürer. The first one matches the letters that have already been shown (for example, task 600).
You start with a square ABCD (here a = 10 cm). The red rectangle has the dimensions a and a/10. The circles have the radius a/10.
What is the perimeter and area of this variant of the letter I. 6 blue points
The second variant is a so-called "textura". The example shown is again the I. The other letters of the alphabet can then be derived from this shape.

 708 rot 2

Start with the square NMOP (here a = 2 cm). Then place another square above and below it. The top and bottom sides are divided into thirds. At each of these points, a square (edge length = a) is placed so that its diagonals are perpendicular to the sides of the other squares.
Then add two more squares to help.
The exact course of the edges of the letter can be seen in the last picture. What is the perimeter and area of this I? 10 red points.

708 rot detail

Date limite pour la solution 14.04.2022.

it

Lettera di Dürer

708 voll

Nonno mostrava due variazioni della lettera I. Tutt’e due furono inventati da Dürer. La prima sta benissima assieme a qquelle che abbiamo già visto prima (p.e. compito 600).
Si inizia con un quadrato ABCD (nel disegno: a = 10 cm). Il rettangolo rosso ha le misure a e a/10. Anche i cerchi hanno il raggio a/10.
Quale sono l’area e la circonferenza di questa variazione? 6 punti blu
La seconda variazione è una cosiddetta “Textura”. L’esempio mostrato è di nuovo la I. Da questa Forma si possono poi derivare tutte le altre lettere dell’alfabeto.

708 rot 2

Si inizia col quadrato NMOP (nel disegno a = 2 cm). A questo si aggiungono altri due quadrati, uno sopra, uno sotto il primo. Di questi si divide il lato superiore o inferior in tre con un punto. Su questi punti verngono messi altre due quadrati (sempre con la lunghezza dei lati = a) nel modo che le diagonali siano rettangolari riguardo I lati degli altri quadrati. Per finire mettiamo altri due quadrati che aiutano trvare la soluzione.
Nell’ultimo disegno si vede un dettaglio di questa I per capire meglio come sono formati i lati.
Quale sono l’area e la lunghezza di questa I? 10 punti rossi

708 rot detail

Lösung/solution/soluzione/résultat/Решение:

 Musterlösung von Karlludwig, danke. --> pdf <--
Die Variante mit überstehenden kleinen Dreiecken gibt es bei Dürer auch.


 

Auswertung Serie 59 (blaue Liste)

Die Buchpreise für die Serie 59 gingen an HIMMELMANN, Dana und Albert A. Herzlichen Glückwünsch.

Platz Name Ort Summe Aufgabe
  697 698 699 700 701 702 703 704 705 706 707 708
1. Reinhold M. Leipzig 52 6 4 3 4 4 4 3 3 3 6 6 6
1. Magdalene Chemnitz 52 6 4 3 4 4 4 3 3 3 6 6 6
1. Birgit Grimmeisen Lahntal 52 6 4 3 4 4 4 3 3 3 6 6 6
1. Karlludwig Cottbus 52 6 4 3 4 4 4 3 3 3 6 6 6
1. Hirvi Bremerhaven 52 6 4 3 4 4 4 3 3 3 6 6 6
1. Paulchen Hunter Heidelberg 52 6 4 3 4 4 4 3 3 3 6 6 6
1. Alexander Wolf Aachen 52 6 4 3 4 4 4 3 3 3 6 6 6
1. Axel Kästner Chemnitz 52 6 4 3 4 4 4 3 3 3 6 6 6
1. HIMMELFRAU Taunusstein 52 6 4 3 4 4 4 3 3 3 6 6 6
1. Calvin Crafty Wallenhorst 52 6 4 3 4 4 4 3 3 3 6 6 6
2. Albert A. Plauen 51 6 4 3 3 4 4 3 3 3 6 6 6
3. Günter S. Hennef 50 6 4 3 3 4 4 3 3 3 6 6 5
3. HeLoh Berlin 50 6 4 3 4 4 4 3 3 1 6 6 6
3. Hans Amstetten 50 6 4 3 4 4 4 3 1 3 6 6 6
4. Frank R. Leipzig 49 6 4 3 4 4 4 - 3 3 6 6 6
4. Dana Ingolstadt 49 6 4 3 4 4 4 3 3 - 6 6 6
5. Janet A. Chemnitz 46 6 4 3 4 4 4 3 3 3 - 6 6
5. Laura Jane Abai Chemnitz 46 6 4 3 4 4 4 3 3 3 - 6 6
6. Gitta Großsteinberg 45 6 4 - - 4 4 3 3 3 6 6 6
7. Gerhard Palme Schwabmünchen 42 - 4 3 4 - 4 3 3 3 6 6 6
8. Ingmar Rubin Berlin 38 6 - 3 4 - 4 3 3 3 6 6 -
8. Maximilian Forchheim 38 6 4 3 4 - - - - 3 6 6 6
9. Siegfried Herrmann Greiz 30 - - 3 4 4 4 3 - - 6 6 -
10. Frank Römer Frankenberg 25 - 4 3 4 4 4 3 3 - - - -
11. Kurt Schmidt Berlin 24 - 4 - 4 - 4 3 3 - - - 6
11. Marit Grießer Sessenhausen 24 6 4 - 3 4 4 3 - - - - -
12. Helmut Schneider Su-Ro 23 - - 3 3 4 4 - - 3 6 - -
13. W. Gliwa Magdeburg 19 - - 3 - - 4 - - - 6 6 -
14. Detlef Edler Königs Wusterhausen 18 - - - - - - - - - 6 6 6
15. Felix Helmert Chemnitz 16 6 4 3 - - - - 3 - - - -
15. Bernd Berlin 16 - - - - - - 3 - 3 6 4 -
16. Sienna Scheibner Chemnitz 13 6 4 - - - - 3 - - - - -
16. Annabell Götz Chemnitz 13 6 4 - - - - 3 - - - - -
16. Finja Effenberger Chemnitz 13 6 4 - - - - 3 - - - - -
17. Louis R. Küchler Chemnitz 11 - - - - 4 4 3 - - - - -
18. Malea Thierfelder Chemnitz 10 4 4 - - - - 2 - - - - -
18. Finn Silas Heinrichs Chemnitz 10 6 - - - 4 - - - - - - -
19. Sophie-Marie Scherzer Chemnitz 9 6 - - - - 3 - - - - - -
19. Nora Frotscher Chemnitz 9 - 4 - - - - - - - 5 - -
20. Valentin Mattheo Schöne Chemnitz 7 - 4 - - - - 3 - - - - -
20. Valerie Müller xxx 7 - 4 - - - - 3 - - - - -
20. Kim Amy Bunge Chemnitz 7 - 4 - - - - - - 3 - - -
20. Phileas Steinbach Chemnitz 7 - 4 - - - - 3 - - - - -
20. Felix Liebe Chemnitz 7 - 4 - - - - 3 - - - - -
21. Josefin Buttler Chemnitz 6 6 - - - - - - - - - - -
21. Quentin Steinbach Chemnitz 6 6 - - - - - - - - - - -
21. Maya Melchert Chemnitz 6 6 - - - - - - - - - - -
21. Anabel Pötschke Chemnitz 6 6 - - - - - - - - - - -
21. Pascal Lindner Chemnitz 6 6 - - - - - - - - - - -
21. Dorothea Richter Chemnitz 6 6 - - - - - - - - - - -
21. Florine Lorenz Chemnitz 6 6 - - - - - - - - - - -
21. Antonio Jobst Chemnitz 6 6 - - - - - - - - - - -
21. Matti Grünert Chemnitz 6 6 - - - - - - - - - - -
21. Matteo Dittmann Chemnitz 6 6 - - - - - - - - - - -
21. Luis Wagler Chemnitz 6 6 - - - - - - - - - - -
21. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
21. Ronja Schobner Chemnitz 6 - - 3 - 3 - - - - - - -
21. Nele Suri Frank Chemnitz 6 6 - - - - - - - - - - -
21. Paula Schürer Chemnitz 6 - 4 - - - - 2 - - - - -
21. Jule König Chemnitz 6 - 4 - - - - 2 - - - - -
21. Sebastian Z Pirna 6 - - - - - - - - - - 6 -
21. Volker Bertram Wefensleben 6 - - - - - - - - - 6 - -
22. Nampari Zöllner Chemnitz 5 5 - - - - - - - - - - -
22. Frida Schwarzenberg Chemnitz 5 5 - - - - - - - - - - -
22. Luise Steinbach Chemnitz 5 - - - - - - - - - 5 - -
22. Max Beyer Chemnitz 5 - - - - - 2 3 - - - - -
22. Anne Frotscher Chemnitz 5 - - - - - - - - - 5 - -
23. Nagy-Balo Andras Budapest 4 - - - - 4 - - - - - - -
23. Mikko Winkler Chemnitz 4 - - - - 4 - - - - - - -
23. Rufus Windrich Chemnitz 4 - - - - 4 - - - - - - -
23. Tommy Oeser Chemnitz 4 - - - - 4 - - - - - - -
23. Arian Jobst Chemnitz 4 - 4 - - - - - - - - - -
23. Yella Kempe Chemnitz 4 4 - - - - - - - - - - -
23. Josefine Bohley Chemnitz 4 - - - - 4 - - - - - - -
24. Dominique Böttinger Chemnitz 3 - - 3 - - - - - - - - -
24. Janko Klügl Chemnitz 3 - - - - - - 3 - - - - -
24. Fynn Zais Chemnitz 3 - - - - - - 3 - - - - -
24. Lea Stülpner Chemnitz 3 - - - - - - 3 - - - - -
24. Paul Wurlitzer Chemnitz 3 - - 3 - - - - - - - - -
24. Annika Schieck Chemnitz 3 - - 3 - - - - - - - - -
24. Ralf Kleinschmidt Frankfurt/Main 3 - - - - - - 3 - - - - -
24. Lilly Barz Chemnitz 3 - - 3 - - - - - - - - -
24. Karoline Stingl Chemnitz 3 - - 3 - - - - - - - - -
24. Maximilian Dotzauer Chemnitz 3 - - 3 - - - - - - - - -
24. Henry Hasenknopf Chemnitz 3 - - 3 - - - - - - - - -
24. Sophie Pöschel Chemnitz 3 - - 3 - - - - - - - - -
24. Henri Lorenz Chemnitz 3 - - 3 - - - - - - - - -
24. Nico Plümer Chemnitz 3 - - 3 - - - - - - - - -
24. Emily Seidel Chemnitz 3 - - 3 - - - - - - - - -
25. Miriam Müller Chemnitz 2 - - - - - - 2 - - - - -
25. Ronja Stegner xxx 2 - - - - - - - 2 - - - -

Auswertung Serie 59 (rote Liste)

Platz Name Ort Summe Aufgabe
  697 698 699 700 701 702 703 704 705 706 707 708
1. Alexander Wolf Aachen 65 6 4 5 4 10 4 3 4 3 6 6 10
1. Reinhold M. Leipzig 65 6 4 5 4 10 4 3 4 3 6 6 10
1. Magdalene Chemnitz 65 6 4 5 4 10 4 3 4 3 6 6 10
2. Paulchen Hunter Heidelberg 64 6 4 5 4 9 4 3 4 3 6 6 10
2. Calvin Crafty Wallenhorst 64 6 4 5 4 9 4 3 4 3 6 6 10
2. Hirvi Bremerhaven 64 6 4 5 4 9 4 3 4 3 6 6 10
3. Karlludwig Cottbus 63 6 4 5 4 8 4 3 4 3 6 6 10
3. Hans Amstetten 63 6 4 5 4 10 4 3 4 3 6 6 8
4. HIMMELFRAU Taunusstein 61 6 4 5 4 8 4 3 4 3 6 6 8
5. Axel Kästner Chemnitz 60 6 4 4 4 7 4 3 4 2 6 6 10
6. HeLoh Berlin 59 6 4 5 4 6 4 3 4 1 6 6 10
7. Birgit Grimmeisen Lahntal 58 6 4 5 4 7 4 3 - 3 6 6 10
8. Albert A. Plauen 56 6 4 5 4 9 4 3 - 3 6 6 6
9. Günter S. Hennef 55 - 4 5 4 6 4 3 4 3 6 6 10
10. Dana Ingolstadt 54 6 4 5 3 6 4 - 4 - 6 6 10
10. Frank R. Leipzig 54 6 4 5 4 10 4 - - 3 6 6 6
11. Gerhard Palme Schwabmünchen 49 - 4 5 4 - 4 3 4 3 6 6 10
12. Gitta Großsteinberg 45 6 4 - - - 4 3 4 3 6 5 10
13. Maximilian Forchheim 43 6 4 5 3 - - - - 3 6 6 10
14. Ingmar Rubin Berlin 40 6 - 5 4 - 4 3 4 2 6 6 -
15. Laura Jane Abai Chemnitz 32 6 4 - 4 4 4 3 4 3 - - -
15. Janet A. Chemnitz 32 6 4 - 4 4 4 3 4 3 - - -
16. Marit Grießer Sessenhausen 29 6 4 - 3 9 4 3 - - - - -
17. Kurt Schmidt Berlin 24 - 4 - 4 - 4 3 - - - - 9
17. Siegfried Herrmann Greiz 24 - - 5 4 - - 3 - - 6 6 -
18. Helmut Schneider Su-Ro 23 - - 5 4 4 4 - - 2 4 - -
19. Detlef Edler Königs Wusterhausen 21 - - - - - - - - - 6 6 9
20. Bernd Berlin 15 - - - - - - 3 1 3 4 4 -
20. W. Gliwa Magdeburg 15 - - - - - 4 - - - 6 5 -
21. Louis R. Küchler Chemnitz 13 6 - - - 4 - 3 - - - - -
22. Frank Römer Frankenberg 11 - - - 4 - - 3 4 - - - -
23. Valerie Müller xxx 8 6 - - - - - 2 - - - - -
23. Sienna Scheibner Chemnitz 8 6 - - - - - 2 - - - - -
23. Finn Silas Heinrichs Chemnitz 8 6 - - - 2 - - - - - - -
24. Malea Thierfelder Chemnitz 7 5 - - - - - 2 - - - - -
25. Willi Grünert Chemnitz 6 6 - - - - - - - - - - -
25. Max Beyer Chemnitz 6 6 - - - - - - - - - - -
25. Yella Kempe Chemnitz 6 6 - - - - - - - - - - -
25. Valentin Mattheo Schöne Chemnitz 6 6 - - - - - - - - - - -
25. Nele Suri Frank Chemnitz 6 6 - - - - - - - - - - -
25. Matti Grünert Chemnitz 6 6 - - - - - - - - - - -
25. Nampari Zöllner Chemnitz 6 6 - - - - - - - - - - -
25. Matteo Dittmann Chemnitz 6 6 - - - - - - - - - - -
25. Johann Richter Chemnitz 6 6 - - - - - - - - - - -
25. Frida Schwarzenberg Chemnitz 6 6 - - - - - - - - - - -
25. Dorothea Richter Chemnitz 6 6 - - - - - - - - - - -
25. Felix Helmert Chemnitz 6 6 - - - - - - - - - - -
25. Volker Bertram Wefensleben 6 - - - - - - - - - 6 - -
25. Marie-Sophie Roß Chemnitz 6 6 - - - - - - - - - - -
25. Anton Schaal Chemnitz 6 6 - - - - - - - - - - -
25. Clara Wetzel Chemnitz 6 6 - - - - - - - - - - -
26. Arian Jobst Chemnitz 5 5 - - - - - - - - - - -
27. Sebastian Z Pirna 4 - - - - - - - - - - 4 -
28. Lea Stülpner Chemnitz 3 - - - - - - 3 - - - - -
28. Ralf Kleinschmidt Frankfurt/Main 3 - - - - - - 3 - - - - -
29. Kim Amy Bunge Chemnitz 2 - - - - - - - - 2 - - -
29. Annabell Götz Chemnitz 2 - - - - - - 2 - - - - -
29. Phileas Steinbach Chemnitz 2 - - - - - - 2 - - - - -
30. Tommy Oeser Chemnitz 1 - - - - 1 - - - - - - -
30. Rufus Windrich Chemnitz 1 - - - - 1 - - - - - - -

 

You have no rights to post comments.
Zum Kommentieren muss man angemeldet sein.