Serie 59

Beitragsseiten

Aufgabe 3

699. Wertungsaufgabe

„Dein Traum der letzten Woche hat mich veranlasst mal ein paar mehr der Zahlen des Herrn Fibonacci aufzuschreiben“, sagte Lisa zu Mike. Hier die ersten 25:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55 , 89, 144, 233, 377, 610 , 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 und die 25. Zahl ist: 75025. Das Schöne an der letzten Zahl ist, diese 25. Zahl endet auch auf 25.“
Das gibt es so vorher nicht, wenn man mal von der ersten Zahl 1 und der 5 absieht.
Es ist eine weitere Fibonaccizahl zu finden, deren „Nummer“ mit der Endung übereinstimmt. 3 blaue Punkte.
Man kann die Fibonaccizahlen der Reihe nach auch mal addieren:
1+1=2, 1+1+2=4; 1+1+2+3=7, 1+1+2+3+5=12, …
Die Gesetzmäßigkeit ist nicht so schwer zu erkennen. Wie lautet diese und wie lässt sie sich beweisen? (1 + 4 = 5) rote Punkte

Termin der Abgabe 20.01.2022. Срок сдачи 20.01.2022. Ultimo termine di scadenza per l´invio è il 20.01.2022. Deadline for solution is the 20th. January 2022. Date limite pour la solution 20.01.2022. Soluciones hasta el 20.01.2022. Beadási határidő 2022.01.20. 截止日期: 2022.01.20 – 请用徳语或英语回答

chin

第699题

“你上周做的梦让我又多写了一些斐波那契数字”。丽莎对迈克说。
“这是前25个数字: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711,28657,46368 。
第25个数字是:75025。最后一个数字很有意思,它既是第25个数字,它的尾数也是25。”
除了第一个数字1(5)以外,找出另外一个斐波那契数字,它的排列顺序和它的尾数相同。 3个蓝点。

人们也可以把数列中的斐波那契数字按顺序相加:
1 + 1 = 2, 1 + 1 + 2 = 4; 1 + 1 + 2 + 3 = 7, 1 + 1 + 2 + 3 + 5 = 12, ...
不难看出它的规律。
那么它是什么样子的?怎么去证明? (1 + 4 = 5)个红点

截止日期: 2022.01.20 – 请用徳语或英语回答

russ

«Твой сон на прошлой неделе заставил меня записать ещё несколько чисел мистера Фибоначчи», сказала Лиза Майку. «Вот первые 25:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 и двадцатьпятое число - 75025. Самое красивое в последнем числе то, что это 25-е число также заканчивается на 25.
Такого раньше не было, кроме первого числа 1 и пятого числа 5.»
Найти другое число Фибоначчи, чей «номер» совпадает с окончанием. 3 синих очка.
Можно также последовательно складывать числа Фибоначчи:
1 + 1 = 2, 1 + 1 + 2 = 4; 1 + 1 + 2 + 3 = 7, 1 + 1 + 2 + 3 + 5 = 12, ...
Закономерность не так уж сложно увидеть. Какая она и как её доказать?
(1 + 4 = 5 красных очков)

hun

„Az álmod előző héten azt eredményezte, hogy kicsit több Fibonacci számot felírtam magamnak.” – MONDTA Lisa Mikenak. Íme, az első 25: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 és a 25. szám: 75025. A legszebb ebben az utolsó, 25. számban az, hogy ez is 25-re végződik. Ilyen nem lehetséges, már ha az 1-es és 5-ös számtól eltekintünk. 3 kék pont.
A Fibonacci számokat sorban össze is adhatjuk: 1+1=2, 1+1+2=4; 1+1+2+3=7, 1+1+2+3+5=12, ...
Az egyenlőséget nem olyan nehéz felismerni. Mi ez és hogyan bizonyíthatjuk be? (1 + 4 = 5) piros pont

frz

"Ton rêve de la semaine dernière m'a fait écrire quelques autres nombres de M. Fibonacci", a déclaré Lisa à Mike. Voici les 25 premiers :
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 et le 25e nombre est : 75025. Ce qui est bien avec le dernier nombre, c'est que ce 25e nombre se termine également sur 25. "
Cela n'existait pas avant, si on ne tient pas compte des premiers nombres 1 et 5.
Est-ce qu’on peut trouver un autre nombre de Fibonacci dont le "nombre" correspond au nombre de la fin. 3 points bleus.
On peut également additionner les nombres de Fibonacci dans l'ordre :
1 + 1 = 2, 1 + 1 + 2 = 4 ; 1 + 1 + 2 + 3 = 7, 1 + 1 + 2 + 3 + 5 = 12, ...
La loi n'est pas si difficile à voir. Qu'est-ce que c'est et comment le prouver ? (1 + 4 = 5) points rouges

esp

"Tu sueño de la semana pasada me hizo escribir algunos números más del señor Fibonacci", le dijo Lisa a Mike. Aquí están los primeros 25:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 y el número 25 es: 75025. Lo bueno del último número es que este número 25 también termina en 25".
Eso no existe antes, salvo el primer número 1 y el número 5.
Hay que encontrar otro número de Fibonacci cuyo "número" coincide con el final. 3 puntos azules.
También puedes sumar los números de Fibonacci uno tras otro:
1+1=2, 1+1+2=4; 1+1+2+3=7, 1+1+2+3+5=12, ...
La regularidad no es tan difícil de reconocer. ¿Qué es y cómo se puede demostrar? (1 + 4 = 5) puntos rojos

en

"Your dream last week prompted me to write down some more of Mr Fibonacci's numbers," Lisa said to Mike. Here are the first 25:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55 , 89, 144, 233, 377, 610 , 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 and the 25th number is: 75025. The nice thing about the last number is, this 25th number also ends in 25."
That doesn't exist before, except for the first number 1 (and the 5).
There is another Fibonacci number to be found whose "number" matches the ending. 3 blue points.
You can also add the Fibonacci numbers one after another:
1+1=2, 1+1+2=4; 1+1+2+3=7, 1+1+2+3+5=12, ...
The regularity is not that difficult to recognize. How is this called and how can it be proved? (1 + 4 = 5) red points
TDeadline for solution is the 20th. January 2022.

it

„Tuo sogno dell‘altra settimana mi ha dato la spinta di annotare i primi 25 numeri di Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 e 75025. È eccezionale che il 25esimo numero ha la terminazione „25“.
A parte l‘ uno con cui inizano i numeri Fibonacci ed il 5 è la prima volta che sorge questa coincidenza. Per 3 punti blu si deve trovare un’altro numero di Fibonacci del quale „posto“ è uguale alla sua terminazione.
Proviamo adesso di sommare i numeri di Fibonacci: 1+1=2; 1+1+2=4; 1+1+2+3=7; 1+1+2+3+5=12;... La regola non è molto di cile da trovare. Qual’è e come si può provare? (1+4=5 punti rossi).

Lösung/solution/soluzione/résultat/Решение:
Musterlösung von Paulchen Hunter, der seinen Rechner zum Glühen gebracht hat, danke --> pdf <--
 

You have no rights to post comments.
Zum Kommentieren muss man angemeldet sein.