Serie 39

Beitragsseiten

Aufgabe 5

461. Wertungsaufgabe

„Du hast aber viele gleichgroße Quadrate ausgeschnitten“, sagte Bernd zu seiner Schwester. „Es sind genau 84“, erwiderte Maria. „Ich benutze alle Quadrate, um daraus Rechtecke zu legen. Dabei soll es immer auch Quadrate geben, die nicht am Rand eines solchen Rechtecks liegen.“ Maria fertigt von jeder Variante ein Foto an, dann legt sie die Quadrate zu einem neuen Rechteck zusammen. Wie viele Fotos kann Maria anfertigen und wie viele Randsteine haben die jeweiligen Rechtecke? Pro Lösung gibt es zwei blaue Punkte (Länge und Breite vertauscht zählt nicht als verschieden)
„Ich frage mich gerade, ob du auch Rechtecke legen kannst, bei denen die Zahl der Quadrate am Rand genau so groß ist wie im Inneren des gelegten Rechtecks? Du musst nicht alle 84 Quadrate verwenden.“ Pro Lösung gibt es drei rote Punkte (Länge und Breite vertauscht zählt nicht als verschieden). Sollte der Nachweis gelingen, dass es keine solche Möglichkeit gibt, werden natürlich auch rote Punkte vergeben.

Termin der Abgabe 21.05.2015. Ultimo termine di scadenza per l´invio è il 21.05.2015. Deadline for solution is the 21th. May 2015. Date limite pour la solution 21.05.2015.

"You've cut out a lot of equal sqares, haven't you", Bernd told his sister.
"They are exactly 84", Maria replied. "I use all of them to lay out rectangles. There should always be squares that are not part of the side of the rectangle."
Maria takes a picture of each variant before she creates another rectangle. How many photos can she take and how many squares do the sides of each rectangle have? Two blue points for each solution (length and width swapped doesn't make a new variant).
"I'm asking myself if it's possible to make rectangles whose sides consist of as many squares as there are inside? You may use less than the 84 squares." Three red points for each solution (length and width swapped doesn't make a new variant). There will be red points in case it can be proved that there are no such rectangles.

it La traduzione italiana sarà di nuovo disponibile dal mese di settembre.

"Mais tu as découpées beaucoup de carrés égaux», a déclaré Bernd à sa sœur. "Il y a exactement 84", réponds Maria. «J’utilise tous les carrés pour en faire des rectangles. Il doit toujours y avoir des carrés qui ne se trouvent pas sur le bord d'un rectangle. » Maria prends une photo de chaque variante, ensuite elle construit un nouveau rectangle avec les carrés. Combien de photos différentes peut-elle prendre, et combien de bordures ont les rectangles respectifs? Deux points bleus par solution. (Inverser la longueur et le largueur ne compte pas comme différent.)
"Je me demande si tu peux construire des rectangles d’une telle manière que le nombre de carrés touchant l’extérieur du rectangle et le même que le nombre de carrés à l’intérieure du rectangle. Tu ne pas obliger d’utiliser les 84 carrés.
3 points rouges par solution (Inverser la longueur et le largueur ne compte pas comme différent.). Si nous parvenons à prouver qu'il n'y a pas une telle possibilité, bien sûr, les points rouges sont attribués.

Lösung/solution/soluzione/résultat:
Die Lösung von Paulchen, danke: --> als pdf <--

You have no rights to post comments.
Zum Kommentieren muss man angemeldet sein.