Serie 51

Beitragsseiten

Aufgabe 3

603. Wertungsaufgabe

„In einem Heft der „Wurzel“ → http://wurzel.org/ ← habe ich im letzten Jahr etwas über eine besondere Sortierung gelesen und das mal mit den bunten Quadern nachgebaut..“ „Ich sehe die Quader sind alle verschieden groß, ich vermute mal, die muss man von groß nach klein übereinander stapeln“. „Das stimmt.. Ich habe als Hilfe ein ganz dünnes Brettchen, das kann ich an irgendeiner Stelle zwischen die Quader schieben und das was auf dem Brett in einem Zug herum drehen. Für die drei dargestellten Möglichkeiten für drei Quader heißt das. Links brauche ich nichts zu tun, Stapel richtig. Die beiden rechten Beispiele lassen sich mit jeweils einem Zug herumdrehen. Ich muss nur mein Brettchen unter den roten Quader schieben und fertig.“ Einen ganzen Stapel drehen ist also auch zulässig?“, fragte Bernd. „Ja“, antwortete seine Schwester.
603

Zu sehen sind 5 verschieden große Quader(A>B>C>D>E). Wie viele Stapelvarianten gibt es insgesamt? Und wie viele der Stapel sind mit genau einem Zug drehbar, so dass der Stapel richtig steht.? (2+2 blaue Punkte)
Wie viele Züge z braucht man höchstens um einen Stapel aus n unterschiedlich großen Quadern richtig zu ordnen. (Es soll wohl z <=2n – 3 für (n>1) )gelten, aber ob das stimmt? – 4 rote Punkte) Noch einen roten Punkt gibt es für einen Stapel (n=5), der mit genau 5 Zügen umsortiert werden kann.

Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

603 Paprika

Termin der Abgabe 02.05.2019. Ultimo termine di scadenza per l´invio è il 02.05.2019. Deadline for solution is the 2th. May 2019. Date limite pour la solution 02.05.2019. Soluciones hasta el 02.05.2019. Beadási határidő 2019.05.02.

hun

„A Gyökér című füzetben → http://wurzel.org/ ← olvastam tavaly egy különleges válogatásról és ezt színes téglatestekből megépítettem. „ „Úgy látom, a tégtestek mind különböző nagyságúak, feltételezem, hogy a nagyobbakra kerülnek a kisebbek.” „Igen. Segítség gyanánt van egy egészen vékony deszkám, ezt tudom bárhol a téglatestek közé tolni és ami a deszkán van, egy mozdulattal körbe forgatni. Három téglatestből ábrázolt három lehetőségnél a bal oldalinál nincs tennivalóm, a halom rendben van. A két jobb oldali példánál a halmot egy mozdulattal át lehet forgatni. A deszkámat csak a piros téglatest alá kell tolnom és kész.” Tehát egy egész halmot átforgatni is érvényes? – kérdezte Bernd. „Igen” – válaszolta a húga.

603

Látható 5 különböző nagyságú téglatest (A>B>C>D>E). Hány féle halmot lehet összesen építeni és mennyi halom forgatható át pontosan egy mozdulattal úgy, hogy a halom helyesen álljon? 2+2 kék pont
Maximum hány forgatás szükséges ahhoz, hogy n számú különböző nagyságú téglatestekből álló halom helyesen álljon. Igaz ez, ha z <=2n – 3 (n>1)? 4 piros pont
Még egy piros pontért adjon meg egy halmot (n=5), amit pontosan 5 mozdulattal lehet átrendezni.

A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket.  ©HRGauern[at]@t-online.de

603 Paprika

fr

"Dans un livret " la racine "→ http://wurzel.org/ ← de l'année dernière, j'ai lu quelque chose sur un tri spécial et je l'ai reconstruit avec les cuboïdes colorés." "Je vois que les blocs sont de tailles différentes, je suppose que tu dois les empiler du plus gros vers le plus petit. " "C’est ça... j’ai comme aide une planche très mince, que je peux pousser quelque part entre les cuboïdes et comme ça retourner ce qui est sur la planche. Pour les trois possibilités indiquées pour trois cubes, cela signifie: à gauche, je n'ai rien à faire, empiler correctement. Les deux exemples sur la droite peuvent être retournés avec un tour à la fois. Tout ce que j'ai à faire, c'est de glisser ma petite planche sous la boîte rouge et j'ai terminé. "Est-ce qu'il est également permis de tourner une pile entière?", demanda Bernd. "Oui," répondit sa sœur. Tu peux voir 5 cuboïdes différents (A> B> C> D> E). Combien y a-t-il de variantes de pile au total? et combien de piles peuvent être tournées en un tour afin qu’elles se tiennent bien? (2 + 2 points bleus)603

Au maximum, combien de mouvements z avez-vous besoin pour trier correctement une pile de n blocs de tailles différentes? (Cela devrait être z <= 2n - 3 (n> 1), mais est-ce vrai - 4 points rouges) Pour 4 points rouges supplémentaires pour une pile (n = 5), qui peut être trié avec exactement 5 coups.

La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus. Règle pour l’énigme:Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. ©HRGauern[at]@t-online.de

603 Paprika

sp

„En un folleto de la „Wurzel“ → http://wurzel.org/ ←(„raíz“ en alemán) he leído algo sobre una colocación especial y entonces lo he construido según este modelo con cuboides de varios colores…“ „Veo que los cuboides son todos de distinto tamaño. Supongo que se tiene que amontonar empezando con los grandes y sigiuiendo con los más pequeños.“ „Es verdad…Como ayuda tengo una tabla fina. Éste puedo poner entre los cuboides en cualquier lugar y volver con aquéllos que están encima. Para los tres posibilidades representados para tres cuboides significa: Al izquierdo no hay que hacer nada, la pila esta correcta. Los dos ejemplos a la derecha se puede volver cada uno con una sola jugada. Solo tengo que poner mi tablita debajo de los cuboides rojos y ya.“ - „Entonces ¿también se puede volver una entera pila?“, preguntó Bernd. „Sí“, le respondió su hermana a él.

603

Podemos ver 5 grandes cuboides variadas (A > B > C > D > E). ¿Cuántas variantes de apilar hay en total? y ¿cuántas de las pilas se puede volver exactamente con una sola jugada, para que la pila sea puesta correcta? (2 + 2 puntos azules)
¿Cuántas jugadas z se requiere como mucho para ordenar una pila de cuboides de variados tamaños correctamente? Dicen que sea válido: z <=2n – 3 (n>1), pero ¿tiene razón? - 4 puntos rojos. Un punto rojo más se recibe para una pila (n=5) que se puede ordenar exactamente con 5 jugadas.
Por la solución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente: Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. ©HRGauern[at]@t-online.de

603 Paprika

en

“In an last year’s issue of the “Wurzel” mathematical magazine → http://wurzel.org/ ← I read something about a special kind of sorting problem. I have reconstructed this with some coloured cuboids.”
“As I see the cuboids are all of different size. I guess they have to be stacked from big to small.”
“That’s right. To do this I have a very thin piece of wood, that I can insert between any two cuboids an so turn around whatever is on top of this slat. When you look at the three depicted possibilities this means that that I don’t have to do a thing about the first stack. The two other stacks can each be turned in one go. I just have to insert the slat under the red cuboid.”
“So it’s allowed to turn a complete stack?” Bernd asked.
“Yes”, his sister answereed.

603

Here you can see five cuboids of different sizes (A>B>C>D>E). How many different ways are there to stack them? How many of these stacks can be turned into a correct stack in one go? - (2+2 blue points)
How many moves z do you need at most to sort a stack of n cuboids of different size? (Some assume z<=2n-3 for n>1, but is there proof?) - 4 red points.
Another red point is awarded for a stack of five cuboids (n=5) that can be sorted in exactly 5 moves.

Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits.  ©HRGauern[at]@t-online.de

603 Paprika

it

„In un periodico della „Wurzel“ -> http://wurzel.org <- l’anno scorso ho letto di un’ ordinamento specifico e l’ho ricostruito con questi cuboidi colorati.” – “ Vedo che I cuboidi hanno tutti una misura diversa e suppongo che vengono impilati dal più grande al più piccolo.” – “È vero. Come aiuto uso una tavoletta sottilissima che posso infilare dovunque voglio per poi voltare in una mossa tutto quello che si trova la sopra. Guardando le tre possibilità per tre cuboidi (che vedi in fondo) significa: A sinistra non c’è niente da fare – la pila è giusta. I due esempi a destra si possono aggiustare in una sola mossa. Basta infilare la mia tavoletta sotto il cuboide rosso.” – “Quindi si può anche voltare una fila intera?”, Bernd chiedeva?” “Si”, diceva sua sorella.”

603
Si vedono 5 cuboidi di misura diversa (A>B>C>D>E). Quanti variazioni esistono per impilarli? E quanti di essi si possono aggiustare in una mossa sola? (2+2 punti blu)

Quante mosse z ci vogliono al massimo per aggiustare una pila di n cuboidi di misura diversa? (Sembra che sia z<=2n-3; n>1, ma è vero? – 4 punti rossi) Un altro punto rosso viene dato per una fila (n=5) che poù essere aggiustato con esattamente 5 mosse.

La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. ©HRGauern[at]@t-online.de

603 Paprika

Lösung/solution/soluzione/résultat:
Musterlösung von calvin --> pdf <-- und Karlludwig (mit allen 20 Möglichkeiten für den roten Zusatzpunkt) --> pdf <--, vielen Dank.

 

Kommentar schreiben


Sicherheitscode
Aktualisieren