Serie 50

Beitragsseiten

Aufgabe 11

599. Wertungsaufgabe

„Was starrst du denn so auf dein Millimeterpapier?“, fragte Maria ihren Bruder. „Ich habe drei Punkte eingetragen, die zu einer linearen Funktion gehören: y=f(x)= 2x +1. Ich weiß, dass alle Punkte der Form (x; 2x+1) auf einer Geraden liegen sollen. Aber wie kann man das nachweisen?“ 6 blaue Punkte.
„Noch spannender fand ich die Aufgabe meines Mathematiklehrers. Der hat die Funktionsgleichung einer quadratischen Funktion der Form y=g(x)=x²+ px+ q ganz einfach abgeändert, so dass die neue Funktion h(x) die Nullstellen 1; 2; 4 und 5 hatte und doch größtenteils wie die Ausgangsfunktion g(x) aussah.“ Eine Art quadratische Funktion mit vier Nullstellen?“ „Genau.“ Erzählt Bernd seiner Schwester ein mathematisches Märchen oder gibt es eine solche Funktion auch wirklich? 6 rote Punkte.
Die Lösung des Symbolrätsels bringt zwei zusätzliche blaue Punkte, aber nur wenn reguläre Punkte eingebracht werden. Für das Rätsel gilt: Jedes Symbol steht für eine Ziffer, gleiche Symbole, → gleiche Ziffer, verschiedene Symbole → verschiedene Ziffern. Enthalten sind die Zahlen: 136, 392. © Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

599 Halma

Termin der Abgabe 28.03.2019. Ultimo termine di scadenza per l´invio è il 28.03.2019. Deadline for solution is the 28th.March 2019. Date limite pour la solution 28.03.2019. Resoluciones hasta el 28.03.2019. Beadási határidő 2019.03.28

hun

„Mit nézel olyan meredten azon a milliméterpapíron?” – kérdezte Mária a bátyját. Három pontot jelöltem meg, amik egy lineáris függvényhez tartoznak. y=(fx)= 2x +1. Tudom, hogy minden pontja az alakzatnak egy egyenesen fekszik. De hogyan tudom ezt bizonyítani? 6 kék pont
„Szerintem még érdekesebb a matektanárom feladata. Ő egy négyzetes függvény egyenletét y=g(x)=x²+ px+ q egész egyszerűen úgy változtatta meg, hogy az új függvény h(x) nullahelyére 1,2,4 és 5 került és az mégis nagyobbrészt úgy nézett ki, mint a kiindulási függvény.” „Ez egyféle négyzetes függvény négy nullhellyel?” „Pontosan.” Bernd egy matematikai mesét mondott a húgának, vagy tényleg létezik ilyen függvény?
A szimbólum rejtvény megoldásáért további két kék pontot kaphat, amennyiben a többi feladatért is szerzett pontot. A rejtvény megfejtésére érvényes: minden jel egy számjegyet szimbolizál, azonos jelek azonos számjegyeket, különböző jelek különböző számjegyeket. A számok tartalmazzák a 136-et és a 392-at. ©HRGauern[at]@t-online.de

599 Halma

fr

"Que regardes-tu sur ton papier graphique?" demanda Maria à son frère. "J'ai entré trois points appartenant à une fonction linéaire: y = (fx) = 2x +1. Je sais que tous les points de la forme (x; 2x + 1) doivent se trouver sur une ligne droite. Mais comment peut-on prouver cela? "6 points bleus.
"J'ai trouvé l’exercice de mon professeur de mathématiques encore plus passionnant. Il a facilement changé l'équation d'une fonction quadratique de la forme y = g (x) = x² + px + q, de sorte que la nouvelle fonction h (x) est les zéros 1; 2; 4 et 5, et pourtant, il ressemblait beaucoup à la fonction initiale g (x). "Une sorte de fonction quadratique à quatre zéros?" "Exactement." Bernd raconte-t-il un conte de fées mathématique ou existe-t-il vraiment une telle fonction? 6 points rouges.
La solution de l'énigme apporte deux points bleus supplémentaires, mais seulement si des points réguliers ont été obtenus.
Règle pour l’énigme :Chaque symbole représente un nombre, les mêmes symboles, le même nombre, différents symboles différents numéros. Inclus sont les nombres: 136, 392. ©HRGauern[at]@t-online.de

599 Halma

sp

„¿Porqué estás fijando tu papel milimetrado?“, le preguntó María a su hermano. „He marcado tres puntos que forman parte de una función lineal: y=(fx)= 2x +1. Sé que todos los puntos de la forma (x; 2x+1) deben formar una recta. Pero ¿cómo se puede probar esto?“ (6 puntos azules)
„Más fascinante me parecía la tarea de mi profesor de matemáticas. Fácilmente cambió la ecuación de una función de segundo grado de la forma y=g(x)=x²+px+q así que la nueva función h(x) tuvo 1; 2; 4 y 5 como ceros de la función y sin embargo parecía mayoritariamente como la función inicial g(x).“ „Entonces una función de segundo grado con cuatro ceros de la función?“ „Exactamente.“ Le está contando Bernd un cuento chino matemático a su hermana o ¿realmente es cierto que existen funciones así? 6 puntos rojos
Por la resolución de rompecabeza de símbolos se recibe dos puntos azules adicionales si se ha ganado los puntos regulares antes. Para el rompecabeza aplica lo siguiente:
Cada símbolo representa una cifra, los mismos símbolos representan las mismas cifras, diferentes símbolos para diferentes cifras. Incluidos son los siguientes números: 136, 392. ©HRGauern[at]@t-online.de

599 Halma

en
“What are you staring at your graph paper?”, Maria asked her brother.
“I have marked three points, that belong to a linear function: y=(fx)= 2x +1. I know, that all the points (x;2x+1) are supposed to be part of the same straight line. But how can you prove this?” - 6 blue points.
“I thought the problem that my maths teacher gave us was even more interesting. He changed the equation for a quadratic function y=g(x)=x²+ px+ q in such a way, that the resulting function h(x) had 1; 2; 4 and 5 as real roots but still looked basically like the original function g(x).”
“A kind of quadratic function with 4 root?”
“Exactly.”
Does Bernd tell his sister a mathematical fairy tale or does such a function really exist? - 6 red points

Solving the picture-puzzle will get you two extra blue points, provided you also got points doing the regular maths problem. The rule for each picture puzzle is: Each icon represents one digit, same icons, same digits, different icons, different digits. Only this numbers are present: 136, 392. ©HRGauern[at]@t-online.de

599 Halma

it

„Perché stai fissando lo sguardo sulla carta millimetrata?”, Maria chiedeva suo fratello. “Ho marcato tre punti, che appartengono a una funzione lineare: y)f(x)=2x+1. So che tutti I punti della forma (x; 2x+1) dovrebbero essere posizionati sulla stessa retta. Ma come si può verificare quello?” 6 punti blu.

“Il compito del mio insegnante di matematica mi sembra essere ancora più avvincente. Lui ha modificato l‘ equazione quadratica y=g(x)=x²+ px+ q nel modo che la nuova funzione h(x) passava per i punti (1/0), (2/0), (4/0) e (5/0) [chiamati punti zero] ma assomigliava per la maggior parte alla funzione originale g(x).” “Allora un tipo di funzione quadratica con quattro punti zero?” “Preciso!” Esiste davvero una tale funzione o Bernd ha raccontato a sua sorella una balla matematica? (6 punti rossi)

La soluzione dell´indovinello simbolico apporta altri due punti blu, ma solo se si apportano punti regolari. Per l´indovinello vale: Ogni simbolo sta per una cifra, stessi simboli, stessa cifra, diversi simboli diverse cifre. Sono compresi i numeri: 136, 392 ©HRGauern[at]@t-online.de

599 Halma

Lösung/solution/soluzione/résultat:

Wenn Schüler einer 8. Klasse zum ersten Mal Punkte einer Funktion der Form y= f(x)=mx+n eintragen, dann sieht es so aus, als würden die Punkte einer solchen Funktion auf einer Geraden liegen, weil sie das auch tun, werden dann solche Funktionen als lineare Funktionen bezeichnet. Man sollte also zeigen, das Punkte auf einer Geraden liegen, ohne schon verauszusetzen, dass es eine Gerade ist. Welche Hilfmittel kennt der Schüler? Ähnlichkeit und den Satz des Pythagoras. Einige Löser haben es Vektoren gezeigt, habe ich gelten lassen, auch wenn die den Schülern nicht bekannt sind. Zu rot in zwei Fällen wurde die gesuchte und damit existierende Funktion gefunden, in einem Fall aber erfüllte die Schreibweise nicht die Bedingung: "Einfache Abänderung" einer Funktionsgleichung der Form y =g(x)= x² + px + q

Lösungshinweise vom Verfasser. --> als pdf <--

 

You have no rights to post comments