Ejercicio de matemáticas semanal - esp

Bewertung: 5 / 5

Stern aktivStern aktivStern aktivStern aktivStern aktiv
 

Ejercicio de matemáticas semanal

exercice de maths de la semaine, math problem of the week, problema di matematica della settimana, सप्ताह के गणित समस्या, математическая задача недели, Ejercicio de matemáticas semanal, 今週の数学問題, בעיה מתמטית של השבוע, مشكلة الرياضيات الأسبوع, 这个周的数学问题, Haftanın matematik problemi, temporäre Problem vun der Woch, μαθηματικό πρόβλημα της εβδομάδας, math tatizo la wiki,

Todos los viernes se pone un nuevo ejercicio a la disposición. La resolución debe ser enviada a más tardar el jueves siguiente. Estos ejercicios tienen diferentes grados de dificultad. Si la respuesta al ejercicio es incompleta o completa – recibir3n entre 2 a 12 puntos respectivamente.
Al completar una serie de 12 problemas, se anuncian a los ganadores de la etapa/serie.
Los puntos logrados serán publicados à aquí ß .:Para cada serie o etapa habrá una rifa de 3 libros. Esos serán sorteados entre los primeros 10 ganadores de la evaluación global. Esos precios se pone la libreria Buchdienst Rattei de Chemniz a la desposición.
Todo tipo de sugerencias serán bien recibidas!

Resoluciones hasta el 02.02.2023 a Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein! o Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

 

Alemán  -  Inglés  -  Francés  -  Italiano - Húngaro - russisch--> 中文/Chinese <--

Serie 62

Problema 738

 

738

"Mira. Dibujé un cuadrado de 8 cm de lado. A continuación, añadí los puntos E, F, G y H (véase la ubicación en el dibujo). El resultado fue que pude dividir el cuadrado original en dos hexágonos congruentes", explica Bernd. Mike reflexionó un momento y luego le dio la razón.
Cuál es el perímetro del hexágono rojo, 4 puntos azules (Sólo medir no cuenta como solución).
¿Cómo debe elegirse la posición de los puntos E y H, debiendo permanecer F y G, para que se mantenga la congruencia de las áreas parciales, pero el perímetro del hexágono rojo pase a ser exactamente de 32 cm, es decir, exactamente tan grande como el del cuadrado ABCD? 4 puntos rojos

 

-> Enigma <--

 https://www.schulmodell.eu/images/stories/mathe/horst/raetsel.php

 

Adresse:

Thomas Jahre
Chemnitzer Schulmodell
Stollberger Straße 25
09119 Chemnitz
Deutschland/Germany

 der QR-Code für diese Seite
Aufgabe der Woche qr

Wochenaufgabe weltweit