Serie 58

Beitragsseiten

Aufgabe 4

688. Wertungsaufgabe

„Schau mal Mike. Ich habe einen Papierstreifen – AB=11 cm lang und 1 cm breit ausgeschnitten.

688

Die Punkte C, D und E habe ich so markiert, dass fast jede Streckenlänge von 1, 2, 3, …, 10 und 11 cm durch zwei dieser Punkte entstehen kann – nur eine Streckenlänge fehlt.“, sagte Lisa. Mike schaute sich den Streifen an und war ganz erstaunt. Er überlegte eine Weile, dann konnte er Lisa einen anderen 11 cm langen Streifen zeigen, der auch solch eine Einteilung hatte. Die kürzeste Strecke von 1 cm lag dabei aber nicht am Rand des Streifens.
Wie könnte der Streifen von Mike ausgesehen haben? 3 blaue Punkte
Bernd fand sogar einen Streifen von AB=17 cm Länge. Er hatte dort 4 Punkte - C, D, E und F – so verteilt, dass fast alle Strecken von 1 bis 17 cm gebildet werden konnten – maximal drei Streckenlängen dürfen fehlen. Wie sah der wohl aus? 4 rote Punkte

Termin der Abgabe 14.10.2021. Срок сдачи 14.10.2021. Ultimo termine di scadenza per l´invio è il 14.10.1921. Deadline for solution is the 14th. October 2021. Date limite pour la solution 14.10.2021. Soluciones hasta el 14.10.2021. Beadási határidő 2021.10.14. 截止日期: 2021.10.14 – 请用徳语或英语回答。

chin

第688题

688

“迈克,看!我剪了一张纸条,它的长AB是11厘米,宽是1厘米。点C、D 和E我是这样标注的:1,2,3... ...10以及11厘米这些线段长度,差不多每条都可以通过这些点中的其中两个点来呈现出来,只有一条线段的长度是缺失的。”丽莎说。
迈克看了纸条后,完全惊呆了。他思考了一会儿,然后他给丽莎看了另外一条11厘米长的也是这样的划分的纸条。不过1厘米长的最短的线段不是在纸条的边缘。
那么迈克的纸条看起来能是什么样子? 3个蓝点

贝恩德甚至也发现了一个AB为17厘米长的纸条。在那儿他是这样分配C,D, E, 和F四个点的:从1到17厘米的所有线段能够被标出,允许最多缺失三条线段的长度。
那么它看起来又是怎么样的呢? 4个红点

截止日期: 2021.10.14 – 请用徳语或英语回答。

rus

«Смотри, Майк. Я вырезала из бумаги полоску - АВ = 11 см в длину и 1 см в ширину.

688

Я отметила точки C, D и E таким образом, чтобы каждый отрезок длиной 1, 2, 3, ..., 10 и 11 см кроме одного может быть создан через две из этих точек », сказала Лиза. Майк посмотрел на полосу и был удивлён. Он подумал немного, потом смог показать Лизе другую полосу длиной 11 см, у которой тоже было такое разделение. Однако кратчайший отрезок в 1 см при этом не был на краю полосы.
Как могла бы выглядеть полоска Майка? 3 синих очка
Бернд даже нашёл полосу длиной AB = 17 см. Там у него были 4 точки - C, D, E и F - распределены таким образом, чтобы можно было сформировать почти все отрезки длиной от 1 до 17 см — максимально отрезки трёх длин могут отсутствовать. Как, пожалуй, она выглядела? 4 красных очка

hun

„Nézd csak Mike, kivágtam egy papírcsíkot, aminek AB=11 cm hosszú és 1 cm széles.

688

A C, Dés E pontot úgy jelöltem be, hogy csaknem minden szakaszhossz 1, 2, 3, …, 10 és 11 cm kettőn ezekből a pontokból létrejöhet, csak egy szakasz hiányzik.” Mike csodálkozva nézte a papírcsíkot. Gondolkodott egy darabig, aztán mutatott Lisának egy másik 11 cm hosszú csíkot, aminek hasonló felosztása volt. A legrövidebb, 1 cm-es szakasz azonban nem a csík szélére esett.
Hogyan nézhetett ki Mike szalagja? 3 kék pont
Bernd talált még egy AB=17 hosszú szalagot is. Ezen 4 – C,D, E és F – pontot így osztott el, hogy csaknem minden szakaszt 1-től 17 cm-ig le tudott képezni, maximum 3 szakaszhossz hiányzott. Hogy nézett ki ez? 4 piros pont

frz

"Regardes Mike. J'ai découpé une bande de papier - AB = 11 cm de long et 1 cm de large.

688

J'ai marqué les points C, D et E de manière à ce que chaque longueur de 1, 2, 3, ..., 10 et 11 cm puisse être créée à travers deux de ces points - il ne manque qu'une seule longueur .. » , dit Lisa. Mike a regardé la bande et a été étonné. Il a réfléchi un moment, puis il a pu montrer à Lisa une autre longueur de 11 cm de long, qui avait également une telle classification. La distance la plus courte de 1 cm n'était pas sur le bord de la bande.

A quoi aurait pu ressembler la longueur de Mike ? 3 points bleus

Bernd a même trouvé une longueur AB = 17 cm de long. Là, il y avait 4 points - C, D, E et F - répartis de manière que presque tous les tronçons de 1 à 17 cm puissent être formés. A quoi ressemblait-il? 4 points rouges

esp

"Mira Mike. He recortado una tira de papel, AB=11 cm de largo y 1 cm de ancho.

688

He marcado los puntos C, D y E para que casi cualquier longitud de tramo de 1, 2, 3, ..., 10 y 11 cm pueda ser creado por dos de estos puntos – solamente una longitud falta", dijo Lisa. Mike miró la tira y se quedó bastante sorprendido. Lo pensó durante un rato y luego pudo mostrarle a Lisa otra tira de 11 cm que también tenía esa división. Pero el tramo más corto de 1 cm no estaba en el borde de la tira.
¿Cómo podría haber sido la raya de Mike? 3 puntos azules
Bernd incluso encontró una tira de AB=17 cm de longitud. Había distribuido allí 4 puntos (C, D, E y F) para que se pudieran formar casi todas las distancias de 1 a 17 cm – pueden faltar 3 como máximo. ¿Qué aspecto tenía? 4 puntos rojos

en

“Look Mike. I did cut out a paper strip – AB=11 cm long and 1 cm wide.

688

I marked the points C, D and E that way, that nearly every line length from 1, 2, 3, …, 10 and 11 cm can be created through two of those points – only one line length is missing.”, Lisa said. Mike looked at the paper strip and was astonished. He thought for a while, than he was able to show Lisa another 11 cm long paper strip, which had the same scale too. The shortest line of 1 cm wasn't located at the edge of the paper strip.
How could the paper strip of Mike have looked like? 3 blue points
Bernd even found another paper strip of the length AB=17 cm. He allocated 4 points - C, D, E and F – that way, that nearly every line from 1 to 17 cm could be created – a maximum of three line lengths can be missing. How did it probably look like? 4 red points

it

“Guarda, Mike. Ho ritagliato una striscia di carta – AB = 11 cm e di una larghezza di 1 cm. Ho marcato i punti C, D e E nel modo che si trova quasi ogni misura 1, 2, 3, … , 10, 11 come tragitto entro due dei punti A, B, C, D, E. Manca solo una”, diceva Lisa.

688

Mike esaminava la striscia ed era del tutto stupefatto. Rifletteva per un certo tratto di tempo, poi poteva presentare un’altra striscia di carta, anche essa con una lunghezza di 11 cm. Il tragitto di 1 cm non si trovava però al bordo della striscia.
Come potrebbe apparire la striscia di Mike? 3 punti blu
Bernd trovava addirittura una striscia di una lunghezza AB = 17 cm. Aveva distribuito 4 punti C, D, E, F nel modo che si potevano trovare quasi tutti i tragitti entro 1 e 17 cm – possono mancare al massimo tre tragitti. Come appariva quella? 4 punti rossi

Lösung/solution/soluzione/résultat/Решение:

 

 

You have no rights to post comments.
Zum Kommentieren muss man angemeldet sein.