Serie 40
- Details
- Zugriffe: 26671
Beitragsseiten
Aufgabe 10
478. Wertungsaufgabe
„Die Aufgabe der letzten Woche ist aus dem Buch von Herrn Schierscher aus Schaan“, sagte der Opa, als er sich die Aufgabe durchlas. „Die einfache (blaue) Aufgabe habe ich mir ausgedacht, die andere ist auch aus dem Buch -es heißt „Verfolgungsprobleme“.
Vorlage für beide Aufgaben ist ein gleichseitiges Dreieck ABC mit der Kantenlänge von 60 cm.
Die Punkte X, Y und Z bewegen gleichförmig sich im positiven Umlauf auf den Kanten des Dreiecks. X startet auf A (30 cm/s). Y startet im Mittelpunkt der Seite BC und Z ist zu Beginn beim Mittelpunkt der Seite AC. Als der Punkt X seinen Startpunkt zum ersten Mal wieder erreicht, trifft er dort mit den Punkten Y und Z zusammen. Wie schnell sind die Punkte Y und Z? 4 blaue Punkte Wie viele Umläufe muss X machen, so dass die Startposition für alle drei Punkte wieder erreicht wird ?– noch 3 blaue Punkte
Für die zweite Aufgabe starten die Punkte X, Y, Z in A, B bzw. C und haben alle das gleiche Tempo (30 cm/s). Die Bewegung erfolgt so, dass die Punkte (positiver Drehsinn) über das Dreieck „laufen“, wobei X in Richtung Y, Y in Richtung Z und Z in Richtung X in Bewegung sind. Nach recht kurzer Zeit treffen sich alle Punkte an einer Stelle und halten an. Wie lange dauert das und wie lang ist der Weg des Punktes X? 8 rote Punkte.
Termin der Abgabe 03.12.2015. Ultimo termine di scadenza per l´invio è il 03.12.2015. Deadline for solution is the 03th. December 2015. Date limite pour la solution 03.12.2015.
“Last weeks problem was taken from ” from a book by Mr Schierscher from Schaan”, granddad said when had read the problem. “I came up with the easier (blue) problem myself but the other one is from the book, which is titled 'Verfolgungsprobleme' (problems of tracking).”
Basis for both problems is an equilateral triangle ABC whose sides are 60 cm.
Points X, Y and Z move at a constant speed anti-clockwise along the sides of the triangle. X starts at point A (30cm/s). Y starts at the centre of side BC and Y starts at the centre of AC. When X reaches it's starting point for the first time, it meets points Y and Z. What is the speed of Y and Z? - 4 blue points.
How many laps does X have to travel before each point is at its starting position again? - another 3 blue points
For the second problem let X, Y and Z start in A, B and C respectively and let each move at the same speed (30 cm/s). This time the points move across the triangle in a way that X moves towards Y, Y towards Z and Z moves towards X. After a rather short time all three points meet and stop. How long does that take and how long is the distance that X covers? - 8 red points
"L’exercice de la semaine dernière vient du livre de M. Schierscher de Schaan," dit le grand-père, alors qu'il étudiait l’exercice. «L’exercice bleu est de moi, l’autre vient également du livre – il s’appelle « problèmes de suivi ".
Le point de départ pour les deux exercices est un triangle équilatéral ABC avec une longueur d'arête de 60 cm.
Les points X, Y et Z se déplacent de façon uniforme dans le sens positif aux bords du triangle. X commence à A (30 cm / s). Y commence au milieu du côté BC et Z est au début du point médian de l'AC.
Lorsque le point X revient sur son point de départ pour la première fois, il tombe sur les points Y et Z. Quelle vitesse font les points Y et Z respectivement? 4 points bleus
Combien de tours doit X faire pour que le point de départ respectif soit atteint pour X, Y et Z ? - 3 points bleus
Maintenant, les points X, Y, Z commencent dans A, B et C respectivement, et ont tous la même vitesse (30 cm / s). Le mouvement a lieu d’une rotation (positif) et les points se baladent sur le triangle où X est dans la direction vers Y, Y dans la direction vers Z et Z dans la direction vers X. Après un certain temps, tous les points se réunissent au même endroit et s’arrêtent. Combien de temps faut-il et quelle est la distance que X doit parcourir ? 8 points rouges.
“L´esercizio di settimana scorsa era tratto dal libro di Signor Schierscher di Schaan”, disse il nonno, quando si stava leggendo il problema. “L´esercizio più semplice (blu) me lo sono inventato io, l´altra è di quel libro- Si chiama “problemi d´inseguimento”.
Modello per entrambi gli esercizi è un triangolo equilatero ABC con una lunghezza degli spigoli di 60cm.
I punti X,Y e Z si muovono uniformemente in un corso positivo sugli spigoli del triangolo. X parte da A (30cm/s). Y parte nel punto centrale del lato BC e Z si trova all´inizio sul punto centrale del lato AC. Quando il punto X raggiunge per la prima volta il suo punto di partenza, si incontra lì con i punti Y e Z. Quanto sono veloci i punti Y e Z? 4 punti blu. Quanti giri deve fare X cosicché tutti i tre punti raggiungano il punto di partenza? – altri 3 punti blu.
Per il secondo esercizio i punti X,Y,Z partono da A,B e C e hanno tutti quanti la stessa velocità (30cm/s). Il movimento si svolge in tal modo, che i punti (senso di rotazione positivo) “corrono” sopra il triangolo, per quanto X si muove in direzione Y, Y in direzione Z e Z in direzione X. Dopo breve tempo tutti i punti si incontrano su un punto e si fermano. Quanto tempo dura questo e quanto è lungo il percosso del punto X? 8 punti rossi.
Lösung/solution/soluzione/résultat:
Lösungsvarianten von Linus, Calvin und Paulchen, danke
als pdfs --> Linus <--, --> Paulchen<--, --> Calvin <--
und Hans (Amstetten):
1. Eine volle Umrundung des Dreiecks (= Umfang des Dreiecks) ist 180 cm lang. Aus v = s/t (v = Geschwindigkeit, s = Weg, t = Zeit) folgt: t = s/v. Für den Punkt X erhält man daher t = 180/30 = 6, d.h. der Punkt X braucht für eine volle Runde 6 Sekunden. Daraus ergibt sich für den Punkt Y: s = 90 cm, t = 6 sec, daraus
folgt: V(Y) = 90/6 = 15 CM/S.
Analog gilt für den Punkt Z: s = 30 cm, t = 6 sec, daraus folgt: V(Z) = 30/6 = 5 CM/S.
2. Ein Umlauf ist für jeden Punkt 180 cm lang. Auf Grund ihrer unterschiedlichen Geschwindigkeiten erhält man folgende Umlaufzeiten:
für X 6 Sekunden, für Y 12 Sekunden, für Z 36 Sekunden. Nach 36 Sekunden hat also der Punkt Z seine Startposition erstmals wieder erreicht. In der selben Zeit hat der Punkt Y 3 Umläufe und DER PUNKT X 6 UMLÄUFE gemacht.
3. Mit dem Buchhinweis wird klar, dass es sich schon bei der roten Aufgabe der Nr. 477 um ein sogenanntes “Verfolgungsproblem” gehandelt hat!!! Auch die aktuelle Aufgabe fällt in die gleiche Kategorie.
In der mathematischen Literatur ist in diesem Zusammenhang vom “Käferproblem” die Rede. Dieses lautet:
“Ausgehend von den Ecken eines regulären n-Ecks (n≥3) verfolgen sich die n mathematischen Käfer A1, A2, A3, ... in zyklischer
Reihenfolge. Dabei bewegen sich alle mit der gleichen konstanten Geschwindigkeit v vorwärts und orientieren ihre Bewegungsrichtung
ständig neu, sodass diese immer auf ihren jeweiligen Vorderkäfer zeigt.”
Der französische Mathematiker Henri Brocard (1845-1922) hat nachgewiesen, dass die Verfolgungskurven in einem regelmäßigen n-Eck
logarithmische Spiralen mit dem Mittelpunkt des n-Ecks als Pol sind. Bettet man die Aufgabe in ein Koordinatensystem ein (z. B. mit dem
Koordinatensystem im Mittelpunkt des n-Ecks), so kann man eine Parameterdarstellung der Käferbahn herleiten. Durch Integration der
Käferbahn erhält man die Länge des Weges: Ln = R/sin(π/n), wobei R der Umkreisradius des regelmäßigen n-Ecks ist.
Die ausführlichen Details dazu findet man in http://did.mat.uni-bayreuth.de/material/verfolgung/za.html
Im vorliegenden Fall (n = 3) erhält man somit: L3 = R/sin(π/3) = R/(1/2)*sqrt(3)) = 2*R/sqrt(3).
Für den Umkreisradius R des gleichseitigen Dreiecks gilt: R = 2/3*h = 2/3*(a/2*sqrt(3)) = a*sqrt(3)/3.
Wegen a=60 cm erhält man für R = 60*sqrt(3)/3 = 20*sqrt(3) und daher für L3:
L3 = 2*20*sqrt(3)/sqrt(3) = 40 CM (= GESAMTWEG FÜR JEDEN DER DREI PUNKTE X, Y UND Z) - ein erstaunliches Ergebnis trotz der Komplexität
der Aufgabe. Aus der Geschwindigkeit v=30 cm/s und der Weglänge s=40 cm erhält man die Zeit: t = s/v = 40/30 = 4/3 SEKUNDEN.