Pyramiden
- Details
- Zugriffe: 5495
Pyramiden
Pyramiden sind Körper. Der Name ist von den ägytischen Pyramiden "übernommen".
Es gibt eine n-eckige Grundfläche AG (Dreieck, Viereck, ...) und n Dreiecksflächen (A1, A2, ..., An bilden den Mantel der Pyramide), die alle einen gemeinsamen Punkt aufweisen - die Spitze der Pyramide. Liegt die Spitze senkrecht über dem "Mittelpunkt" der Grundfläche, so spricht man von einer geraden Pyramide. Ansonsten hat man eine schiefe Pyramide. Der (senkrechte) Abstand zwischen Grundfläche (bzw. der Ebene auf der die Grundfläche liegt) und der Spitze ist die Höhe h der Pyramide.
allgemeine Formeln:
Sind Grund- und Mantelflächen gleichseitige Dreiecke, so nennt man diese Pyramide auch Tetraeder (einer der platonischen Körper)
Formeln:
eine weitere Pyramide - gerade rechteckige Pyramide
Grundfläche:
Volumen:
Die Mantelfläche besteht aus zwei verschiedenen Dreiecken A1 und A2, für deren Flächeninhalte die Seitenhöhen ha und hb benötigt werden. Diese Seitenhöhen lassen sich mit dem Satz des Pythagoras ganz schnell ermitteln.
Wenn man mag, so kann man die letzte Formel dann auch so zusammenfassen:
*
oder aber auch so:
* gefällt mir besser - ist aber Geschmackssache
Für eine gerade quadratische Pyramide setzt man a = b und verwendet dann entsprechend nur noch a und erhält:
Die Berechnung von quadratischen Pyramiden bei denen der Fußpunkt der Höhe auf einer der Diagonalen kann mittels der --> Geogebradatei <-- untersucht werden.