Serie 45

Aufgabe 3

531. Wertungsaufgabe
Maria verteilt an Bernd, Lisa und Mike drei weiße und zwei schwarze Kugeln. Sie verlässt kurz das Zimmer und die drei tauschen die Kugeln aus, wobei jeder eine oder zwei Kugeln in der Hand behält. Als sie wieder ins Zimmer kommt, erfährt sie:
Bernd: „Ich habe nur Kugeln der gleichen Farbe in der Hand.“
Lisa: „Ich habe Kugeln mit unterschiedlicher Farbe.
Mike: „Ich habe genau zwei Kugeln.“
„Also, wenn keiner von euch die Wahrheit gesagt hat, dann weiß ich, wie die Kugeln verteilt sind.“ „Okay, unsere Angaben waren alle falsch.“ Wer hat welche Kugeln (Anzahl + Farbe) in der Hand – vier blaue Punkte.
„Hier nun meine Aufgabe. Ich habe viele Primzahlen p untersucht. Egal was ich auch probiert habe, wenn p größer als 3 war, ergab sich dass p²-1 ohne Rest durch 24 teilbar war.“, sagte Maria.
5 rote Punkte für das Finden einer Primzahl p (p>3), für die p²-1 nicht durch 24 teilbar ist bzw. für den Nachweis, dass die Division für alle Primzahlen ohne Rest ausführbar ist.

Termin der Abgabe 18.05.2017. Ultimo termine di scadenza per l´invio è il 18.05.2017. Deadline for solution is the 18th. May 2017. Date limite pour la solution 18.05.2017. Resoluciones hasta el 18.05.2017

fr

Maria a distribué à Bernd, Lisa et Mike trois boules blancs et deux boules noirs. Elle quitte brièvement la chambre et les trois s’échangent les boules mais gardent une ou deux dans leurs mains. Quand elle revient dans la chambre, elle apprend:
Bernd: «J'ai seulement les boules de même couleur dans ma main. » Lisa: «J'ai des boules de couleurs différentes". Mike: «J'ai exactement deux boules. » « Donc, si personne entre vous ne dit la vérité, alors je sais comment les boules sont distribués. » « D'accord, nos déclarations étaient fausses » Qui a quelle boule (nombre + couleur) dans leur main -. 4 points bleus.
« Voici mon exercice. J'ai examiné beaucoup de nombres premiers p. Peu importe ce que j'ai essayé, si p est supérieur à 3, p²-1 sans reste est divisible par 24. « dit Maria. 5 points rouges pour trouver un nombre premier p (p> 3), pour lequel p²-1 n'est pas divisible par 24 ou de démontrer que la division peut être exécutée sans reste pour tous les nombres premiers.

sp

Maria reparte tres bolas blancas y dos bolas negras a Bernd, Lisa y Mike. Maria sale por un rato del cuarto y los tres cambian las bolas entre ellos que al final cada uno de ellos tiene uno o dos bolas en las manos. Cuando Maria regresa le dicen:
Bernd:”Solo tengo bolas con el mismo color en las manos.”
Lisa:”Tengo bolas con colores diferentes.”
Mike: “ Tengo cabal dos bolas.”
“Bueno, si nadie me dijo la verdad yo sé como están divididos las bolas.”
“Bueno, todas las informaciones son falsas.” Quien tiene cuales bolas (cantidad y color) en las manos? – 4 puntos azules.
“Ahora les dejo una tarea yo. He averiguado muchos números primos p. He calculado mucho pero si p era mayor que 3 me salió que p²-1 se podia dividir entre 24 sin resto.”, les dijo Maria. Se recibe 5 puntos rojos para averiguar el número p (p>3) con lo cuál no se puede dividir p²-1 entre 24 o bien para la prueba que se puede dividir sin resto todos los números primos.

en

Maria hands out three white and two black balls to Bernd, Lisa and Mike. She leaves the room for a short while while the three of them swap balls so that each of them has one or two balls. When she returns she is given the following information:
Bernd: “I've got only balls of equal colour.”
Lisa: “I've got balls of different colour.”
Mike: “I've got exactly two balls.”
“If none of you told the truth I know how the balls are distributed.”
“Right, each of our statement was wrong.”
“Who has got which ball (number and colour)?” - four blue points.
“Now to my problem”, Maria said. “I studied a lot of prime numbers p. No matter which number I tried, when p was bigger than 3, p²-1 could always be divided without remainder by 24.”
5 red points for finding a prime number p (p>3), for which p²-1 cannot be divided by 24, or for showing that this division can be done without remainder for any prime number.

it

Maria distribuisce a Bernd, Lisa e Mike tre palline bianche e due nere. Lascia brevemente la stanza e i tre si scambiano le palline mantenendo ciascuno una o due palline in mano. Quando ritorna nella stanza viene a sapere che:
Bernd: „Io tengo in mano solo palline dello stesso colore.“
Lisa: „Io tengo palline di colori diversi.“
Mike: „Io ho esattamente due palline.“
„Allora, se nessuno di voi ha detto la verità, so precisamente come sono distribuite le palline.“
„Va bene, le nostre indicazioni erano tutte false.“ Chi ha quali palline (Numero+colore) in mano? – quattro punti blu.
„Adesso il mio indovinello. Ho analizzato tanti numeri primi p. Qualsiasi cosa abbia provato: se p era più grande di 3 risultava che p²-1 senza resto era dividibile per 24.“, disse Maria. 5 punti rossi per la scoperta di un numero primo p (p>3), per il quale p²-1 non è dividibile per 24, ossia per la prova che la divisione per tutti i numeri primi non è praticabile senza un resto.

 Lösung/solution/soluzione/résultat:

Beispiellösung von Calvin, danke --> als pdf <--

Kommentar schreiben


Sicherheitscode
Aktualisieren