Übungsaufgaben zur Wärmeberechnung

Bewertung: 4 / 5

Stern aktivStern aktivStern aktivStern aktivStern inaktiv
 

Übungsaufgaben zur Wärmeberechnung

Wärme ist zu einem ein Zustand - Energie, die in der Lage ist Arbeit zu verrichten. Zum anderen ist es Arbeit - also ein Vorgang, bei dem ...
Formelzeichen der Wärme: Q, die Einheit ist J (Joule) bzw. kJ
Berechnung (eine der Grundgleichungen der Wärmelehre = Thermodynamik):  Q = c \cdot m \cdot \Delta T , aber auch  Q = c \cdot m \cdot \Delta \vartheta
c - spezifische Wärmekapazität (Stoffkonstante Einheit  \frac{kJ}{kg \cdot K}
m - Masse des Stoffes (meist in kg)
\Delta T Temperaturdifferenz in K (Kelvin), wobei  z.B. der Unterschied zwischen 10 °C und 25 °C auch 15 K beträgt.
Die Gleichung umzustellen ist ja nicht wirklich schwer:  Q = c \cdot m \cdot \Delta T
Betrachte 40=4*2*5 und dann siehst du (hoffentlich) 
 4 = \frac{40}{(2 \cdot 5)} \\  2 = \frac{40}{(4 \cdot 5)} \\ 5 = \frac{40}{(4 \cdot 2)}

1. Es werden 15 l Wasser von 14 °C auf 38 °C erwärmt. Wie groß ist die benötigte Wärme?
geg:
m = 15 kg (* l = kg, weil Wasser, ansonsten müsste die Dichte einbezogen werden)
Δ T = 24 K (* 38 - 14)
 c = 4,19 \frac {kJ}{kg \cdot K}
ges: Q in kJ
Lösung:
 Q = c \cdot m \cdot \Delta T \\ Q = 4,19 \frac {kJ}{kg \cdot K} \cdot 15 kg \cdot 24 K \\ \underline{\underline{Q = 1508,4 kJ}}
Die benötigte Wärme beträgt 1,51 MJ.
Unten benannter Fehler wurde korrigiert.

2. Quecksilber wird von -20 °C auf 60 °C mit einer Wärme von 15 kJ erwärmt. Wie viel Quecksilber war das?
geg:
Q = 15 kJ
 c = 0,14 \frac {kJ}{kg \cdot K}
Δ T = 80 K
ges m in kg
Lösung:
 Q = c \cdot m \cdot \Delta T \quad | : (\Delta T \cdot c ) \\ m = \frac {Q}{( \Delta T \cdot c)} \\ m =\frac {15 kJ}{(0,14 \cdot\frac {kJ}{kg \cdot K} \cdot 80 K) } \\ \underline{ \underline {m = 1,34 kg }}

Es waren 1,34 kg Quecksilber, die erwärmt wurden.


3. Es sollen 16 kg Öl mittels 1500 J erwärmt werden. Welche Ausgangstemperatur müsste das Öl gehabt haben, wenn die erreichte Temperatur bei 79 °C liegt?
geg:
m = 16 kg
Q = 1 500 J = 1,5 kJ
T2 = 79 °C
 c = 1,97 \frac {kJ}{kg \cdot K}
ges: T1 (vorher Δ T)
Lsg:
 Q = c \cdot m \cdot \Delta T \quad | : (c \cdot m) \\ \Delta T = \frac{Q}{(c \cdot m)} \\ \Delta T = \frac {1,5}{1,97 \frac{kJ}{Kg \cdot K} \cdot 16 kg} \\ \underline { \underline {\Delta T = 0,048 K}}

Die Ausgangtemperatur ist damit 78, 952 °C gewesen.
(Anmerkung: mit Q = 1500 kJ, wäre die Differenz rund 31,4 °C gewesen).
Achtung: Die obige Gleichung kann nur dann Anwendung finden, so lange sich der Aggregatzustand nicht ändert, ebenso sind die Besondertheiten bei Gasen zu beachten.)

Werte für die spezifische Wärmekapazität verschiedener Stoffe --> hier <--